Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Drug Dev Res ; 85(6): e22250, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39154218

RESUMO

Insomnia is a sleep disorder in which you have trouble falling and/or staying asleep. This research aims to evaluate the sedative effects of fraxin (FX) on sleeping mice induced by thiopental sodium (TS). In addition, a molecular docking study was conducted to investigate the molecular processes underlying these effects. The study used adult male Swiss albino mice and administered FX (10 and 20 mg/kg, i.p.) and diazepam (DZP) (2 mg/kg) either separately or in combination within the different groups to examine their modulatory effects. After a period of 30 min, the mice that had been treated were administered (TS: 20 mg/kg, i.p.) to induce sleep. The onset of sleep for the mice and the length of their sleep were manually recorded. Additionally, a computational analysis was conducted to predict the role of gamma-aminobutyric acid (GABA) receptors in the sleep process and evaluate their pharmacokinetics and toxicity. The outcomes indicated that FX extended the length of sleep and reduced the time it took to fall asleep. When the combined treatment of FX and DZP showed synergistic sedative action. Also, FX had a binding affinity of -7.2 kcal/mol, while DZP showed -8.4 kcal/mol. The pharmacokinetic investigation of FX demonstrated favorable drug-likeness and strong pharmacokinetic characteristics. Ultimately, FX demonstrated a strong sedative impact in the mouse model, likely via interacting with the GABAA receptor pathways.


Assuntos
Diazepam , Hipnóticos e Sedativos , Simulação de Acoplamento Molecular , Sono , Animais , Masculino , Camundongos , Hipnóticos e Sedativos/farmacologia , Diazepam/farmacologia , Sono/efeitos dos fármacos , Receptores de GABA/metabolismo , Receptores de GABA-A/metabolismo
2.
Chem Biodivers ; : e202400874, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39113595

RESUMO

This study evaluates the pharmacological effects of iridoid glucoside loganic acid, a plant constituent with diverse properties, based on literature, and explores the underlying cellular mechanisms for treating several ailments. Data were collected from reliable electronic databases, including PubMed, Scopus, Web of Science, and Google Scholar, etc. The results demonstrated the anti-inflammatory, anti-oxidant, and other protective effects of loganic acid on metabolic diseases and disorders such as atherosclerosis, diabetes, and obesity, in addition to its osteoprotective and anticancer properties. The antioxidant activity of loganic acid demonstrates its capacity to protect cells from oxidative damage and mitigates inflammation by reducing the activity of inflammatory cytokines involving TNF-α and IL-6, substantially upregulating the expression of PPAR-γ/α, and decreasing the clinical signs of inflammation-related conditions related to hypertriglyceridemia and atherosclerosis. Meanwhile, loganic acid inhibits bone loss, exhibits osteoprotective properties by increasing mRNA expression levels of bone synthesizing genes such as Alpl, Bglap, and Sp7, and significantly increases osteoblastic proliferation in preosteoblast cells. Loganic acid is an anti-metastatic drug that reduces MnSOD expression, inhibits EMT and metastasis, and prevents cellular migration, proliferation, and invasion in hepatocellular carcinoma cells. However, additional clinical trials are required to assess its safety, efficacy, and human dose.

3.
Heliyon ; 10(12): e32899, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38988539

RESUMO

Natural products are being developed as possible treatment options due to the rising prevalence of cancer and the harmful side effects of synthetic medications. Arctiin is a naturally occurring lignan found in numerous plants and exhibits different pharmacological activities, along with cancer. To elucidate the anticancer properties and underlying mechanisms of action, a comprehensive search of various electronic databases was conducted using appropriate keywords to identify relevant publications. The findings suggest that arctiin exhibits anticancer properties against tumor formation and various cancers such as cervical, myeloma, prostate, endothelial, gastric, and colon cancers in several preclinical pharmacological investigations. This naturally occurring compound exerts its anticancer effect through different cellular mechanisms, including mitochondrial dysfunction, cell cycle at different phases (G2/M), inhibition of cell proliferation, apoptotic cell death, and cytotoxic effects, as well as inhibition of migration and invasion of various malignant cells. Moreover, the study also revealed that, among the various cellular pathways, arctiin was shown to be more potent in terms of the PI3K/AKT and JAK/STAT signaling pathways. However, pharmacokinetic investigation indicated the compound's poor oral bioavailability. Because of these findings, arctiin might be considered a promising chemotherapeutic drug candidate.

4.
Chem Biodivers ; 21(7): e202400286, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38752614

RESUMO

Rosavin is an alkylbenzene diglycoside primarily found in Rhodiola rosea (L.), demonstrating various pharmacological properties in a number of preclinical test systems. This study focuses on evaluating the pharmacological effects of rosavin and the underlying molecular mechanisms based on different preclinical and non-clinical investigations. The findings revealed that rosavin has anti-microbial, antioxidant, and different protective effects, including neuroprotective effects against various neurodegenerative ailments such as mild cognitive disorders, neuropathic pain, depression, and stress, as well as gastroprotective, osteoprotective, pulmoprotective, and hepatoprotective activities. This protective effect of rosavin is due to its capability to diminish inflammation and oxidative stress. The compound also manifested anticancer properties against various cancer via exerting cytotoxicity, apoptotic cell death, arresting the different phases (G0/G1) of the cancerous cell cycle, inhibiting migration, and invading other organs. Rosavin also regulated MAPK/ERK signaling pathways to exert suppressing effect of cancer cell. However, because of its high-water solubility, which lowers its permeability, the phytochemical has low oral bioavailability. The compound's relevant drug likeness was evaluated by the in silico ADME, revealing appropriate drug likeness. We suggest more extensive investigation and clinical studies to determine safety, efficacy, and human dose to establish the compound as a reliable therapeutic agent.


Assuntos
Antioxidantes , Humanos , Animais , Antioxidantes/farmacologia , Antioxidantes/química , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/química , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neoplasias/metabolismo , Proliferação de Células/efeitos dos fármacos
5.
Sci Rep ; 14(1): 6642, 2024 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-38503897

RESUMO

The present study was designed to evaluate the antiemetic activity of abietic acid (AA) using in vivo and in silico studies. To assess the effect, doses of 50 mg/kg b.w. copper sulfate (CuSO4⋅5H2O) were given orally to 2-day-old chicks. The test compound (AA) was given orally at two doses of 20 and 40 mg/kg b.w. On the other hand, aprepitant (16 mg/kg), domperidone (6 mg/kg), diphenhydramine (10 mg/kg), hyoscine (21 mg/kg), and ondansetron (5 mg/kg) were administered orally as positive controls (PCs). The vehicle was used as a control group. Combination therapies with the referral drugs were also given to three separate groups of animals to see the synergistic and antagonizing activity of the test compound. Molecular docking and visualization of ligand-receptor interaction were performed using different computational tools against various emesis-inducing receptors (D2, D3, 5HT3, H1, and M1-M5). Furthermore, the pharmacokinetics and toxicity properties of the selected ligands were predicted by using the SwissADME and Protox-II online servers. Findings indicated that AA dose-dependently enhances the latency of emetic retching and reduces the number of retching compared to the vehicle group. Among the different treatments, animals treated with AA (40 mg/kg) exhibited the highest latency (98 ± 2.44 s) and reduced the number of retching (11.66 ± 2.52 times) compared to the control groups. Additionally, the molecular docking study indicated that AA exhibits the highest binding affinity (- 10.2 kcal/mol) toward the M4 receptors and an elevated binding affinity toward the receptors 5HT3 (- 8.1 kcal/mol), M1 (- 7.7 kcal/mol), M2 (- 8.7 kcal/mol), and H1 (- 8.5 kcal/mol) than the referral ligands. Taken together, our study suggests that AA has potent antiemetic effects by interacting with the 5TH3 and muscarinic receptor interaction pathways. However, additional extensive pre-clinical and clinical studies are required to evaluate the efficacy and toxicity of AA.


Assuntos
Abietanos , Antieméticos , Animais , Simulação de Acoplamento Molecular , Ondansetron , Vômito/induzido quimicamente , Vômito/tratamento farmacológico , Receptores Muscarínicos
6.
Eur J Pharmacol ; 965: 176289, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38158111

RESUMO

Piperine is a natural alkaloid that possesses a variety of therapeutic properties, including anti-inflammatory, antioxidant, antibacterial, and anticarcinogenic activities. The present study aims to assess the medicinal benefits of piperine as an anti-diarrheal agent in a chick model by utilizing in vivo and in silico techniques. For this, castor oil was administered orally to 2-day-old chicks to cause diarrhea. Bismuth subsalicylate (10 mg/kg), loperamide (3 mg/kg), and nifedipine (2.5 mg/kg) were used as positive controls, while the vehicle was utilized as a negative control. Two different doses (25 and 50 mg/kg b.w.) of the test sample (piperine) were administered orally, and the highest dose was tested with standards to investigate the synergistic activity of the test sample. In our findings, piperine prolonged the latent period while reducing the number of diarrheal feces in the experimental chicks during the monitoring period (4 h). At higher doses, piperine appears to reduce diarrheal secretion while increasing latency in chicks. Throughout the combined pharmacotherapy, piperine outperformed bismuth subsalicylate and nifedipine in terms of anti-diarrheal effects with loperamide. In molecular docking, piperine exhibited higher binding affinities towards different inflammatory enzymes such as cyclooxygenase 1 (-7.9 kcal/mol), cyclooxygenase 2 (-8.4 kcal/mol), nitric oxide synthases (-8.9 kcal/mol), and L-type calcium channel (-8.8 kcal/mol), indicating better interaction of PP with these proteins. In conclusion, piperine showed a potent anti-diarrheal effect in castor oil-induced diarrheal chicks by suppressing the inflammation and calcium ion influx induced by castor oil.


Assuntos
Alcaloides , Benzodioxóis , Bismuto , Loperamida , Compostos Organometálicos , Piperidinas , Alcamidas Poli-Insaturadas , Salicilatos , Humanos , Loperamida/efeitos adversos , Antidiarreicos/farmacologia , Óleo de Rícino/efeitos adversos , Nifedipino , Simulação de Acoplamento Molecular , Diarreia/induzido quimicamente , Diarreia/tratamento farmacológico , Diarreia/metabolismo , Alcaloides/efeitos adversos , Inflamação/tratamento farmacológico
7.
Plants (Basel) ; 12(24)2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38140516

RESUMO

Quercetin (QUA), a flavonoid compound, is ubiquitously found in plants and has demonstrated a diverse range of biological activities. The primary objective of the current study is to assess the potential antiemetic properties of QUA using an in vivo and in silico approach. In this experiment, 4-day-old chicks were purchased to induce emesis by orally administering copper sulfate pentahydrate (CuSO4·5H2O) at a dose of 50 mg/kg (orally). Domperidone (DOM) (6 mg/kg), Hyoscine (HYS) (21 mg/kg), and Ondansetron (OND) (5 mg/kg) were treated as positive controls (PCs), and distilled water and a trace amount of Tween 80 mixture was employed as a negative control (NC). QUA was given orally at two distinct doses (25 and 50 mg/kg). Additionally, QUA (50 mg/kg) and PCs were administered separately or in combination to assess their antagonistic or synergistic effects on the chicks. The binding affinity of QUA and referral ligands towards the serotonin receptor (5HT3), dopamine receptors (D2 and D3), and muscarinic acetylcholine receptors (M1-M5) were estimated, and ligand-receptor interactions were visualized through various computational tools. In vivo findings indicate that QUA (25 and 50 mg/kg) has a significant effect on reducing the number of retches (16.50 ± 4.65 and 10.00 ± 4.19 times) and increasing the chick latency period (59.25 ± 4.75 and 94.25 ± 4.01 s), respectively. Additionally, QUA (50 mg/kg) in combination with Domperidone and Ondansetron exhibited superior antiemetic effects, reducing the number of retches and increasing the onset of emesis-inducing time. Furthermore, it is worth noting that QUA exhibited the strongest binding affinity against the D2 receptor with a value of -9.7 kcal/mol through the formation of hydrogen and hydrophobic bonds. In summary, the study found that QUA exhibited antiemetic activity in chicks, potentially by interacting with the D2 receptor pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA