Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
1.
Front Biosci (Landmark Ed) ; 29(2): 71, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38420831

RESUMO

The abnormal intermediate glucose metabolic pathways induced by elevated intracellular glucose levels during hyperglycemia often establish the metabolic abnormality that leads to cellular and structural changes in development and to progression of diabetic pathologies. Glucose toxicity generally refers to the hyperglycemia-induced irreversible cellular dysfunctions over time. These irreversible cellular dysfunctions in diabetic nephropathy include: (1) inflammatory responses, (2) mesangial expansion, and (3) podocyte dysfunction. Using these three cellular events in diabetic nephropathy as examples of glucose toxicity in the diabetic complications, this review focuses on: (1) the molecular and cellular mechanisms associated with the hexosamine biosynthetic pathway that underly glucose toxicity; and (2) the potential therapeutic tools to inhibit hyperglycemia induced pathologies. We propose novel therapeutic strategies that directly shunts intracellular glucose buildup under hyperglycemia by taking advantage of intracellular glucose metabolic pathways to dampen it by normal synthesis and secretion of hyaluronan, and/or by intracellular chondroitin sulfate synthesis and secretion. This could be a useful way to detoxify the glucose toxicity in hyperglycemic dividing cells, which could mitigate the hyperglycemia induced pathologies in diabetes.


Assuntos
Nefropatias Diabéticas , Hiperglicemia , Humanos , Glucose/metabolismo , Nefropatias Diabéticas/complicações , Vias Biossintéticas , Hexosaminas , Hiperglicemia/complicações , Hiperglicemia/metabolismo
2.
J Cell Immunol ; 5(3): 82-86, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37885773

RESUMO

Heparin is a highly sulfated, hence highly polyanionic, glycosaminoglycan with a repeating disaccharide that contains a hexuronic acid, and it has been used as an anticoagulant clinically for more than half a century. Daily IP injections of small amounts of heparin in the STZ diabetic rat prevented these pathological responses even though the animals sustained hyperglycemic levels of glucose throughout. However, the structural determinant that mediates this activity is not clear. This paper describes our finding that the responses of hyperglycemic dividing mesangial cells to heparin are mediated by its non-reducing terminal trisaccharide and proposes that the non-reducing end tri-saccharide of heparin acts as a scavenger tool to detoxify the glucose toxicity in diabetes.

3.
J Biol Chem ; 299(8): 104995, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37394007

RESUMO

Infiltrated pre-inflammatory monocytes and macrophages have important roles in the induction of diabetic lung injuries, but the mechanism mediating their infiltration is still unclear. Here, we showed that airway smooth muscle cells (SMCs) activated monocyte adhesion in response to hyperglycemic glucose (25.6 mM) by significantly increasing hyaluronan (HA) in the cell matrix, with concurrent 2- to 4-fold increases in adhesion of U937 monocytic-leukemic cells. The HA-based structures were attributed directly to the high-glucose and not to increased extracellular osmolality, and they required growth stimulation of SMCs by serum. Treatment of SMCs with heparin in high-glucose induces synthesis of a much larger HA matrix, consistent with our observations in the glomerular SMCs. Further, we observed increases in tumor necrosis factor-stimulated gene-6 (TSG-6) expression in high-glucose and high-glucose plus heparin cultures, and the heavy chain (HC)-modified HA structures existed on the monocyte-adhesive cable structures in high-glucose and in high-glucose plus heparin-treated SMC cultures. Interestingly, these HC-modified HA structures were unevenly distributed along the HA cables. Further, the in vitro assay with recombinant human TSG-6 and the HA14 oligo showed that heparin has no inhibitory activity on the TSG-6-induced HC-transfer to HA, consistent with the results from SMC cultures. These results support the hypothesis that hyperglycemia in airway smooth muscle induces the synthesis of a HA matrix that recruits inflammatory cells and establishes a chronic inflammatory process and fibrosis that lead to diabetic lung injuries.


Assuntos
Diabetes Mellitus , Hiperglicemia , Lesão Pulmonar , Humanos , Diabetes Mellitus/metabolismo , Matriz Extracelular/metabolismo , Glucose/farmacologia , Glucose/metabolismo , Heparina/farmacologia , Heparina/metabolismo , Ácido Hialurônico/metabolismo , Hiperglicemia/metabolismo , Lesão Pulmonar/metabolismo , Monócitos/metabolismo , Animais , Camundongos , Camundongos Endogâmicos BALB C
4.
Adv Exp Med Biol ; 1402: 3-29, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37052843

RESUMO

Cartilages are unique in the family of connective tissues in that they contain a high concentration of the glycosaminoglycans, chondroitin sulfate and keratan sulfate attached to the core protein of the proteoglycan, aggrecan. Multiple aggrecan molecules are organized in the extracellular matrix via a domain-specific molecular interaction with hyaluronan and a link protein, and these high molecular weight aggregates are immobilized within the collagen and glycoprotein network. The high negative charge density of glycosaminoglycans provides hydrophilicity, high osmotic swelling pressure and conformational flexibility, which together function to absorb fluctuations in biomechanical stresses on cartilage during movement of an articular joint. We have summarized information on the history and current knowledge obtained by biochemical and genetic approaches, on cell-mediated regulation of aggrecan metabolism and its role in skeletal development, growth as well as during the development of joint disease. In addition, we describe the pathways for hyaluronan metabolism, with particular focus on the role as a "metabolic rheostat" during chondrocyte responses in cartilage remodeling in growth and disease.Future advances in effective therapeutic targeting of cartilage loss during osteoarthritic diseases of the joint as an organ as well as in cartilage tissue engineering would benefit from 'big data' approaches and bioinformatics, to uncover novel feed-forward and feed-back mechanisms for regulating transcription and translation of genes and their integration into cell-specific pathways.


Assuntos
Cartilagem Articular , Ácido Hialurônico , Agrecanas/genética , Agrecanas/análise , Agrecanas/metabolismo , Ácido Hialurônico/metabolismo , Polieletrólitos/análise , Polieletrólitos/metabolismo , Polieletrólitos/farmacologia , Cartilagem Articular/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Glicosaminoglicanos , Lectinas Tipo C/metabolismo
5.
Transl Vis Sci Technol ; 12(4): 13, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-37052911

RESUMO

Purpose: Hyaluronan (HA) exists in two forms, high molecular weight HA (HMWHA) and low molecular weight HA (LMWHA), which have distinct physiological functions. Therefore it is imperative to know the form of HA within pharmaceutical products, including eye products. This study developed an accurate, sensitive, and quantitative method to characterize the form of HA in eye products. Thereafter, the effects of the HA-containing eye products on corneal wound healing were investigated. Methods: The MW distributions and concentrations of HA in over the counter eye products were determined by size exclusion chromatography (SEC) high-pressure liquid chromatography (HPLC). The effects of the eye products containing HA on corneal wound healing were characterized both in vitro and in vivo using the scratch assay and the debridement wound model, respectively. Results: The concentrations and MWs of HA were successfully determined within a range of 0.014 to 0.25 mg/mL using SEC HPLC. The concentrations of HA in the ophthalmic products varied from 0.14 to 4.0 mg/mL and the MWs varied from ∼100 kDa to >2500 kDa. All but one HA-containing eye product had an inhibitory effect on corneal wound healing, whereas pure HA promoted corneal wound healing. Conclusions: A novel SEC-HPLC method was developed for quantifying and characterizing the MW of HA in eye products. Although HA promoted corneal wound healing, HA-containing eye products inhibited corneal wound healing, likely caused by preservatives. Translational Relevance: SEC-HPLC could be implemented as a routine method for determining the form of HA in commercially available ophthalmic products.


Assuntos
Lesões da Córnea , Ácido Hialurônico , Humanos , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Cromatografia Líquida de Alta Pressão , Peso Molecular , Cicatrização , Córnea
6.
J Biol Chem ; 299(4): 103074, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36858200

RESUMO

Heparin can block pathological responses associated with diabetic nephropathy in animal models and human patients. Our previous studies showed that the interaction of heparin on the surface of rat mesangial cells (RMCs) entering G1 of cell division in hyperglycemic glucose: 1) blocked glucose uptake by glucose transporter 4; 2) inhibited cytosolic uridine diphosphate-glucose elevation that would occur within 6 h from G0/G1; and 3) prevented subsequent activation of hyaluronan synthesis in intracellular compartments and subsequent inflammatory responses. However, specific proteins that interact with heparin are unresolved. Here, we showed by live cell imaging that fluorescent heparin was rapidly internalized into the cytoplasm and then into the endoplasmic reticulum, Golgi, and nuclei compartments. Biotinylated-heparin was applied onto the surface of growth arrested G0/G1 RMCs in order to extract heparin-binding protein(s). SDS-PAGE gels showed two bands at ∼70 kDa in the extract that were absent when unlabeled heparin was used to compete. Trypsin digests of the bands were analyzed by MS and identified as calreticulin and prelamin A/C. Immunostaining with their antibodies identified the presence of calreticulin on the G0/G1 RMC cell surface. Previous studies have shown that calreticulin can be on the cell surface and can interact with the LDL receptor-related protein, which has been implicated in glucose transport by interaction with glucose transporter 4. Thus, cell surface calreticulin can act as a heparin receptor through a mechanism involving LRP1, which prevents the intracellular responses in high glucose and reprograms the cells to synthesize an extracellular hyaluronan matrix after division.


Assuntos
Calreticulina , Divisão Celular , Fase G1 , Glucose , Heparina , Hiperglicemia , Células Mesangiais , Fase de Repouso do Ciclo Celular , Animais , Humanos , Ratos , Calreticulina/metabolismo , Células Cultivadas , Mesângio Glomerular/metabolismo , Glucose/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Heparina/farmacologia , Heparina/metabolismo , Ácido Hialurônico/metabolismo , Células Mesangiais/citologia , Células Mesangiais/metabolismo , Hiperglicemia/metabolismo
7.
J Allergy Infect Dis ; 4(1): 16-23, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38618493

RESUMO

Many diabetic complications, such as renal and cardiovascular disease, share a common association with extensive and chronic inflammation due to infiltration by activated leukocytes that originate from the bone marrow (BM). Our previous study demonstrated that macrophage progenitor cells that divided in hyperglycemia induced intracellular synthesis of hyaluronan and became pro-inflammatory macrophages (Mpi), and that the presence of low concentrations of heparin (~50 nM) prevented the intracellular HA synthesis and promoted the formation of tissue repair macrophages (Mtr). However, the molecular mechanism underlying heparin's role is still unknown. This study showed that heparin can be internalized by dividing monocyte progenitor cells. Further, there are two most abundant heparin binding proteins, alpha-enolase (ENO-1) and cofilin-1, identified on monocyte cell surfaces. In addition to their conventional roles inside of cells, ENO-1 and cofilin-1 can be found on cell surfaces and are also involved in autoimmune diseases. Thus, this study provides new insight into heparin's role in regulating monocyte and macrophage function.

8.
Front Oncol ; 12: 906260, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36330477

RESUMO

Chemoresistance in colorectal cancer initiating cells (CICs) involves the sustained activation of multiple drug resistance (MDR) and WNT/ß-catenin signaling pathways, as well as of alternatively spliced-isoforms of CD44 containing variable exon-6 (CD44v6). In spite of its importance, mechanisms underlying the sustained activity of WNT/ß-catenin signaling have remained elusive. The presence of binding elements of the ß-catenin-interacting transcription factor TCF4 in the MDR1 and CD44 promoters suggests that crosstalk between WNT/ß-catenin/TCF4-activation and the expression of the CD44v6 isoform mediated by FOLFOX, a first-line chemotherapeutic agent for colorectal cancer, could be a fundamental mechanism of FOLFOX resistance. Our results identify that FOLFOX treatment induced WNT3A secretion, which stimulated a positive feedback loop coupling ß-catenin signaling and CD44v6 splicing. In conjunction with FOLFOX induced WNT3A signal, specific CD44v6 variants produced by alternative splicing subsequently enhance the late wave of WNT/ß-catenin activation to facilitate cell cycle progression. Moreover, we revealed that FOLFOX-mediated sustained WNT signal requires the formation of a CD44v6-LRP6-signalosome in caveolin microdomains, which leads to increased FOLFOX efflux. FOLFOX-resistance in colorectal CICs occurs in the absence of tumor-suppressor disabled-2 (DAB2), an inhibitor of WNT/ß-catenin signaling. Conversely, in sensitive cells, DAB2 inhibition of WNT-signaling requires interaction with a clathrin containing CD44v6-LRP6-signalosome. Furthermore, full-length CD44v6, once internalized through the caveolin-signalosome, is translocated to the nucleus where in complex with TCF4, it binds to ß-catenin/TCF4-regulated MDR1, or to CD44 promoters, which leads to FOLFOX-resistance and CD44v6 transcription through transcriptional-reprogramming. These findings provide evidence that targeting CD44v6-mediated LRP6/ß-catenin-signaling and drug efflux may represent a novel approach to overcome FOLFOX resistance and inhibit tumor progression in colorectal CICs. Thus, sustained drug resistance in colorectal CICs is mediated by overexpression of CD44v6, which is both a functional biomarker and a therapeutic target in colorectal cancer.

9.
Am J Pathol ; 192(12): 1683-1698, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36063901

RESUMO

Normal myofibroblast differentiation is critical for proper skin wound healing. Neoexpression of α-smooth muscle actin (α-SMA), a marker for myofibroblast differentiation, is driven by transforming growth factor (TGF)-ß receptor-mediated signaling. Hyaluronan and its three synthesizing enzymes, hyaluronan synthases (Has 1, 2, and 3), also participate in this process. Closure of skin wounds is significantly accelerated in Has1/3 double-knockout (Has1/3-null) mice. Herein, TGF-ß activity and dermal collagen maturation were increased in Has1/3-null healing skin. Cultures of primary skin fibroblasts isolated from Has1/3-null mice had higher levels of TGF-ß activity, α-SMA expression, and phosphorylation of p38 mitogen-activated protein kinase at Thr180/Tyr182, compared with wild-type fibroblasts. p38α mitogen-activated protein kinase was a necessary element in a noncanonical TGF-ß receptor signaling pathway driving α-SMA expression in Has1/3-null fibroblasts. Myocardin-related transcription factor (MRTF), a cofactor that binds to the transcription factor serum response factor (SRF), was also critical. Nuclear localization of MRTF was increased, and MRTF binding to SRF was enhanced in Has1/3-null fibroblasts. Inhibition of MRTF or SRF expression by RNA interference suppresses α-SMA expression at baseline and diminished its overexpression in Has1/3-null fibroblasts. Interestingly, total matrix metalloproteinase activity was increased in healing skin and fibroblasts from Has1/3-null mice, possibly explaining the increased TGF-ß activation.


Assuntos
Proteína Quinase 14 Ativada por Mitógeno , Proteínas Quinases p38 Ativadas por Mitógeno , Camundongos , Animais , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Hialuronan Sintases/genética , Hialuronan Sintases/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Miofibroblastos/metabolismo , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Células Cultivadas , Actinas/metabolismo , Fibroblastos/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Transdução de Sinais , Cicatrização , Fatores de Crescimento Transformadores/metabolismo
10.
Front Oncol ; 12: 906415, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35982950

RESUMO

Cancer-initiating cells (CICs) drive colorectal tumor growth by their supportive niches where CICs interact with multiple cell types within the microenvironment, including cancer-associated fibroblasts (CAFs). We investigated the interplay between the CICs and the clinically relevant chemotherapeutic FOLFOX that creates the persistent tumorigenic properties of colorectal CICs, and stimulates the microenvironmental factors derived from the CAFs. We found that the CICs expressing an immunophenotype (CD44v6[+]) promote FOLFOX-resistance and that the CIC-immunophenotype was enhanced by factors secreted by CAFs after FOLFOX treatment These secreted factors included periostin, IL17A and WNT3A, which induced CD44v6 expression by activating WNT3A/ß-catenin signaling. Blocking the interaction between CICs with any of these CAF-derived factors through tissue-specific conditional silencing of CD44v6 significantly reduced colorectal tumorigenic potential. To achieve this, we generated two unique vectors (floxed-pSico-CD44v6 shRNA plus Fabpl-Cre) that were encapsulated into transferrin coated PEG-PEI/(nanoparticles), which when introduced in vivo reduced tumor growth more effectively than using CD44v6-blocking antibodies. Notably, this tissue-specific conditional silencing of CD44v6 resulted in long lasting effects on self-renewal and tumor growth associated with a positive feedback loop linking WNT3A signaling and alternative-splicing of CD44. These findings have crucial clinical implications suggesting that therapeutic approaches for modulating tumor growth that currently focus on cell-autonomous mechanisms may be too limited and need to be broadened to include mechanisms that recognize the interplay between the stromal factors and the subsequent CIC-immunophenotype enrichment. Thus, more specific therapeutic approaches may be required to block a chemotherapy induced remodeling of a microenvironment that acts as a paracrine regulator to enrich CD44v6 (+) in colorectal CICs.

11.
Biomater Res ; 26(1): 34, 2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35869489

RESUMO

BACKGROUND: The self-assembling process of cartilage tissue engineering is a promising technique to heal cartilage defects, preventing osteoarthritic changes. Given that chondrocytes dedifferentiate when expanded, it is not known if cellular expansion affects the development of self-assembled neocartilage. The objective of this study was to use proteomic, mechanical, and biochemical analyses to quantitatively investigate the development of self-assembled neocartilage derived from passaged, rejuvenated costal chondrocytes. METHODS: Yucatan minipig costal chondrocytes were used to create self-assembled neocartilage constructs. After 1, 4, 7, 14, 28, 56, or 84 days of self-assembly, constructs were analyzed through a variety of histological, biomechanical, biochemical, and proteomic techniques. RESULTS: It was found that temporal trends in neocartilage formation are similar to those seen in native hyaline articular cartilage development. For example, between days 7 and 84 of culture, tensile Young's modulus increased 4.4-times, total collagen increased 2.7-times, DNA content decreased 69.3%, collagen type II increased 1.5-times, and aggrecan dropped 55.3%, mirroring trends shown in native knee cartilage. Importantly, collagen type X, which is associated with cartilage calcification, remained at low levels (≤ 0.05%) at all neocartilage developmental time points, similar to knee cartilage (< 0.01%) and unlike donor rib cartilage (0.98%). CONCLUSIONS: In this work, bottom-up proteomics, a powerful tool to interrogate tissue composition, was used for the first time to quantify and compare the proteome of a developing engineered tissue to a recipient tissue. Furthermore, it was shown that self-assembled, costal chondrocyte-derived neocartilage is suitable for a non-homologous approach in the knee.

12.
Acta Biomater ; 143: 52-62, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35235865

RESUMO

The objective of this work is to examine the development of porcine cartilage by analyzing its mechanical properties, biochemical content, and proteomics at different developmental stages. Cartilage from the knees of fetal, neonatal, juvenile, and mature pigs was analyzed using histology, mechanical testing, biochemical assays, fluorophore-assisted carbohydrate electrophoresis, and bottom-up proteomics. Mature cartilage has 2.2-times the collagen per dry weight of fetal cartilage, and fetal cartilage has 2.1-times and 17.9-times the glycosaminoglycan and DNA per dry weight of mature cartilage, respectively. Tensile and compressive properties peak in the juvenile stage, with a tensile modulus 4.7-times that of neonatal. Proteomics analysis reveals increases in collagen types II and III, while collagen types IX, XI, and XIV, and aggrecan decrease with age. For example, collagen types IX and XI decrease 9.4-times and 5.1-times, respectively from fetal to mature. Mechanical and biochemical measurements have their greatest developmental changes between the neonatal and juvenile stages, where mechanotransduction plays a major role. Bottom-up proteomics serves as a powerful tool for tissue characterization, showing results beyond those of routine biochemical analysis. For example, proteomic analysis shows significant drops in collagen types IX, XI, and XIV throughout development, which shows insight into the permanence of cartilage's matrix. Changes in overall glycosaminoglycan content compared to aggrecan and link protein indicate non-enzymatic degradation of aggrecan structures or hyaluronan in mature cartilage. In addition to tissue characterization, bottom-up proteomics techniques are critical in tissue engineering efforts toward repair or regeneration of cartilage in animal models. STATEMENT OF SIGNIFICANCE: In this study, the development of porcine articular cartilage is interrogated through biomechanical, biochemical, and proteomic techniques, to determine how mechanics and extracellular matrix composition change from fetal to mature cartilage. For the first time, a bottom-up proteomics approach is used to reveal a wide variety of protein changes through aging; for example, the collagen subtype composition of the cartilage increases in collagen types II and III, and decreases in collagen types IX, XI, and XIV. This analysis shows that bottom-up proteomics is a critical tool in tissue characterization, especially toward developing a deeper understanding of matrix composition and development in tissue engineering studies.


Assuntos
Cartilagem Articular , Proteômica , Agrecanas/metabolismo , Animais , Cartilagem Articular/metabolismo , Colágeno/metabolismo , Colágeno Tipo II/metabolismo , Glicosaminoglicanos/metabolismo , Mecanotransdução Celular , Suínos
13.
BMC Immunol ; 22(1): 52, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34348643

RESUMO

BACKGROUND: Current research suggests that the glial scar surrounding penetrating brain injuries is instrumental in preserving the surrounding uninjured tissue by limiting the inflammatory response to the injury site. We recently showed that tumor necrosis factor (TNF)-stimulated gene-6 (TSG-6), a well-established anti-inflammatory molecule, is present within the glial scar. In the present study we investigated the role of TSG-6 within the glial scar using TSG-6 null and littermate control mice subjected to penetrating brain injuries. RESULTS: Our findings show that mice lacking TSG-6 present a more severe inflammatory response after injury, which was correlated with an enlarged area of astrogliosis beyond the injury site. CONCLUSION: Our data provides evidence that TSG-6 has an anti-inflammatory role within the glial scar.


Assuntos
Astrócitos/fisiologia , Lesões Encefálicas/metabolismo , Moléculas de Adesão Celular/metabolismo , Cicatriz/imunologia , Inflamação/metabolismo , Neuroglia/patologia , Animais , Lesões Encefálicas/imunologia , Moléculas de Adesão Celular/genética , Células Cultivadas , Modelos Animais de Doenças , Gliose , Glicosaminoglicanos/metabolismo , Humanos , Inflamação/imunologia , Camundongos , Camundongos Knockout , Neuroglia/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
14.
Front Cell Dev Biol ; 9: 649862, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34150753

RESUMO

BACKGROUND: Discoveries in the identification of transcription factors, growth factors and extracellular signaling molecules have led to the detection of downstream targets that modulate valvular tissue organization that occurs during development, aging, or disease. Among these, matricellular protein, periostin, and cytoskeletal protein filamin A are highly expressed in developing heart valves. The phenotype of periostin null indicates that periostin promotes migration, survival, and differentiation of valve interstitial cushion cells into fibroblastic lineages necessary for postnatal valve remodeling/maturation. Genetically inhibiting filamin A expression in valve interstitial cushion cells mirrored the phenotype of periostin nulls, suggesting a molecular interaction between these two proteins resulted in poorly remodeled valve leaflets that might be prone to myxomatous over time. We examined whether filamin A has a cross-talk with periostin/signaling that promotes remodeling of postnatal heart valves into mature leaflets. RESULTS: We have previously shown that periostin/integrin-ß1 regulates Pak1 activation; here, we revealed that the strong interaction between Pak1 and filamin A proteins was only observed after stimulation of VICs with periostin; suggesting that periostin/integrin-ß-mediated interaction between FLNA and Pak1 may have a functional role in vivo. We found that FLNA phosphorylation (S2152) is activated by Pak1, and this interaction was observed after stimulation with periostin/integrin-ß1/Cdc42/Rac1 signaling; consequently, FLNA binding to Pak1 stimulates its kinase activity. Patients with floppy and/or prolapsed mitral valves, when genetically screened, were found to have point mutations in the filamin A gene at P637Q and G288R. Expression of either of these filamin A mutants failed to increase the magnitude of filamin A (S2152) expression, Pak1-kinase activity, actin polymerization, and differentiation of VICs into mature mitral valve leaflets in response to periostin signaling. CONCLUSION: PN-stimulated bidirectional interaction between activated FLNA and Pak1 is essential for actin cytoskeletal reorganization and the differentiation of immature VICs into mature valve leaflets.

15.
Int J Mol Sci ; 22(2)2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33451103

RESUMO

Cancer initiating cells (CICs) drive tumor formation and drug-resistance, but how they develop drug-resistance characteristics is not well understood. In this study, we demonstrate that chemotherapeutic agent FOLFOX, commonly used for drug-resistant/metastatic colorectal cancer (CRC) treatment, induces overexpression of CD44v6, MDR1, and oncogenic transcription/translation factor Y-box-binding protein-1 (YB-1). Our study revealed that CD44v6, a receptor for hyaluronan, increased the YB-1 expression through PGE2/EP1-mTOR pathway. Deleting CD44v6, and YB-1 by the CRISPR/Cas9 system attenuates the in vitro and in vivo tumor growth of CICs from FOLFOX resistant cells. The results of DNA:CD44v6 immunoprecipitated complexes by ChIP (chromatin-immunoprecipitation) assay showed that CD44v6 maintained the stemness traits by promoting several antiapoptotic and stemness genes, including cyclin-D1, BCL2, FZD1, GINS-1, and MMP9. Further, computer-based analysis of the clones obtained from the DNA:CD44v6 complex revealed the presence of various consensus binding sites for core stemness-associated transcription factors "CTOS" (c-Myc, TWIST1, OCT4, and SOX2). Simultaneous expressions of CD44v6 and CTOS in CD44v6 knockout CICs reverted differentiated CD44v6-knockout CICs into CICs. Finally, this study for the first time describes a positive feedback loop that couples YB-1 induction and CD44 alternative splicing to sustain the MDR1 and CD44v6 expressions, and CD44v6 is required for the reversion of differentiated tumor cells into CICs.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Receptores de Hialuronatos/genética , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Proteína 1 de Ligação a Y-Box/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Biomarcadores , Sistemas CRISPR-Cas , Diferenciação Celular , Autorrenovação Celular/genética , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Fluoruracila/uso terapêutico , Perfilação da Expressão Gênica , Técnicas de Inativação de Genes , Humanos , Receptores de Hialuronatos/metabolismo , Imunofenotipagem , Leucovorina/uso terapêutico , Compostos Organoplatínicos/uso terapêutico , Transdução de Sinais
16.
Cells ; 9(3)2020 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-32143276

RESUMO

Sorsby's fundus dystrophy (SFD) is an inherited blinding disorder caused by mutations in the tissue inhibitor of metalloproteinase-3 (TIMP3) gene. The SFD pathology of macular degeneration with subretinal deposits and choroidal neovascularization (CNV) closely resembles that of the more common age-related macular degeneration (AMD). The objective of this study was to gain further insight into the molecular mechanism(s) by which mutant TIMP3 induces CNV. In this study we demonstrate that hyaluronan (HA), a large glycosaminoglycan, is elevated in the plasma and retinal pigment epithelium (RPE)/choroid of patients with AMD. Mice carrying the S179C-TIMP3 mutation also showed increased plasma levels of HA as well as accumulation of HA around the RPE in the retina. Human RPE cells expressing the S179C-TIMP3 mutation accumulated HA apically, intracellularly and basally when cultured long-term compared with cells expressing wildtype TIMP3. We recently reported that RPE cells carrying the S179C-TIMP3 mutation have the propensity to induce angiogenesis via basic fibroblast growth factor (FGF-2). We now demonstrate that FGF-2 induces accumulation of HA in RPE cells. These results suggest that the TIMP3-MMP-FGF-2-HA axis may have an important role in the pathogenesis of CNV in SFD and possibly AMD.


Assuntos
Neovascularização de Coroide/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Degeneração Macular/metabolismo , Inibidor Tecidual de Metaloproteinase-3/metabolismo , Células Cultivadas , Neovascularização de Coroide/genética , Humanos , Degeneração Macular/genética , Degeneração Macular/patologia , Mutação/genética , Retina/metabolismo , Retina/patologia
17.
Am J Pathol ; 190(6): 1236-1255, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32201263

RESUMO

Hyaluronidase (HYAL)-2 is a weak, acid-active, hyaluronan-degrading enzyme broadly expressed in somatic tissues. Aberrant HYAL2 expression is implicated in diverse pathology. However, a significant proportion of HYAL2 is enzymatically inactive; thus the mechanisms through which HYAL2 dysregulation influences pathobiology are unclear. Recently, nonenzymatic HYAL2 functions have been described, and nuclear HYAL2 has been shown to influence mRNA splicing to prevent myofibroblast differentiation. Myofibroblasts drive fibrosis, thereby promoting progressive tissue damage and leading to multimorbidity. This study identifies a novel HYAL2 cytoplasmic function in myofibroblasts that is unrelated to its enzymatic activity. In fibroblasts and myofibroblasts, HYAL2 interacts with the GTPase-signaling small molecule ras homolog family member A (RhoA). Transforming growth factor beta 1-driven fibroblast-to-myofibroblast differentiation promotes HYAL2 cytoplasmic relocalization to bind to the actin cytoskeleton. Cytoskeletal-bound HYAL2 functions as a key regulator of downstream RhoA signaling and influences profibrotic myofibroblast functions, including myosin light-chain kinase-mediated myofibroblast contractility, myofibroblast migration, myofibroblast collagen/fibronectin deposition, as well as connective tissue growth factor and matrix metalloproteinase-2 expression. These data demonstrate that, in certain biological contexts, the nonenzymatic effects of HYAL2 are crucial in orchestrating RhoA signaling and downstream pathways that are important for full profibrotic myofibroblast functionality. In conjunction with previous data demonstrating the influence of HYAL2 on RNA splicing, these findings begin to explain the broad biological effects of HYAL2.


Assuntos
Fibroblastos/metabolismo , Hialuronoglucosaminidase/metabolismo , Miofibroblastos/metabolismo , Transdução de Sinais/fisiologia , Proteína rhoA de Ligação ao GTP/metabolismo , Animais , Fibrose/metabolismo , Humanos , Masculino , Splicing de RNA , Ratos
18.
J Biol Chem ; 295(15): 4849-4857, 2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32107314

RESUMO

Monocytes are rapidly recruited to sites of diabetic complications and differentiate into macrophages. Previously, we showed that rat kidney mesangial cells dividing during hyperglycemic stress abnormally synthesize hyaluronan (HA) in intracellular compartments. This initiates a stress response, resulting in an extracellular HA matrix after division that recruits inflammatory cells. Cell-cell communication among macrophages that are recruited into the glomeruli and the damaged rat mesangial cells leads to diabetic nephropathy, fibrosis, and proteinurea, which are inhibited in heparin-treated diabetic rats. In this study, we found that murine bone marrow-derived macrophages (BMDMs) and a human leukemic cell line, U937 cells, dividing in hyperglycemia also accumulate intracellular HA and that heparin inhibits the HA accumulation. Both cell types expressed increased levels of proinflammatory markers: inducible nitric-oxide synthase and tumor necrosis factor-α, when cultured under hyperglycemic stress, which was inhibited by heparin. Furthermore, the abnormal intracellular HA was also observed in peripheral blood monocytes derived from three different hyperglycemic diabetic mouse models: streptozotocin-treated, high-fat fed, and Ins2Akita. Moreover, peripheral blood monocytes in humans with type 2 diabetes and poorly controlled blood glucose levels (hemoglobin A1c (HbA1c) levels of >7) also had intracellular HA, whereas those with HbA1c of <7, did not. Of note, heparin increased the anti-inflammatory markers arginase 1 and interleukin-10 in murine BMDMs. We conclude that heparin treatment of high glucose-exposed dividing BMDMs promotes an anti-inflammatory tissue-repair phenotype in these cells.


Assuntos
Anti-Inflamatórios/farmacologia , Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Tipo 2/fisiopatologia , Heparina/farmacologia , Hiperglicemia/patologia , Inflamação/prevenção & controle , Macrófagos/imunologia , Animais , Anticoagulantes/farmacologia , Arginase/metabolismo , Matriz Extracelular/metabolismo , Feminino , Glucose/metabolismo , Humanos , Hiperglicemia/imunologia , Hiperglicemia/metabolismo , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/patologia , Mediadores da Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Interleucina-10/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Monócitos/metabolismo
19.
Sci Rep ; 10(1): 280, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31937874

RESUMO

Chronic hypoxia leads to pathologic remodeling of the pulmonary vasculature and pulmonary hypertension (PH). The antioxidant enzyme extracellular superoxide dismutase (SOD3) protects against hypoxia-induced PH. Hyaluronan (HA), a ubiquitous glycosaminoglycan of the lung extracellular matrix, is rapidly recycled at sites of vessel injury and repair. We investigated the hypothesis that SOD3 preserves HA homeostasis by inhibiting oxidative and enzymatic hyaluronidase-mediated HA breakdown. In SOD3-deficient mice, hypoxia increased lung hyaluronidase expression and activity, hyaluronan fragmentation, and effacement of HA from the vessel wall of small pulmonary arteries. Hyaluronan fragmentation corresponded to hypoxic induction of the cell surface hyaluronidase-2 (Hyal2), which was localized in the vascular media. Human pulmonary artery smooth muscle cells (HPASMCs) demonstrated hypoxic induction of Hyal2 and SOD-suppressible hyaluronidase activity, congruent to our observations in vivo. Fragmentation of homeostatic high molecular weight HA promoted HPASMC proliferation in vitro, whereas pharmacologic inhibition of hyaluronidase activity prevented hypoxia- and oxidant-induced proliferation. Hypoxia initiates SOD3-dependent alterations in the structure and regulation of hyaluronan in the pulmonary vascular extracellular matrix. These changes occurred soon after hypoxia exposure, prior to appearance of PH, and may contribute to the early pathogenesis of this disease.


Assuntos
Ácido Hialurônico/metabolismo , Hipertensão Pulmonar/patologia , Hipóxia , Animais , Hipóxia Celular , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Ácido Hialurônico/análise , Ácido Hialurônico/farmacologia , Hialuronoglucosaminidase/antagonistas & inibidores , Hialuronoglucosaminidase/genética , Hialuronoglucosaminidase/metabolismo , Hipertensão Pulmonar/metabolismo , Pulmão/enzimologia , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Artéria Pulmonar/citologia , Artéria Pulmonar/enzimologia , Superóxido Dismutase/deficiência , Superóxido Dismutase/genética , Regulação para Cima
20.
J Biol Chem ; 295(11): 3485-3496, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-31932306

RESUMO

Hyaluronan (HA) is one of the most prevalent glycosaminoglycans of the vascular extracellular matrix (ECM). Abnormal HA accumulation within blood vessel walls is associated with tissue inflammation and is prominent in most vascular pathological conditions such as atherosclerosis and restenosis. Hyaluronan synthase 2 (HAS2) is the main hyaluronan synthase enzyme involved in HA synthesis and uses cytosolic UDP-glucuronic acid and UDP-GlcNAc as substrates. The synthesis of UDP-glucuronic acid can alter the NAD+/NADH ratio via the enzyme UDP-glucose dehydrogenase, which oxidizes the alcohol group at C6 to the COO- group. Here, we show that HAS2 expression can be modulated by sirtuin 1 (SIRT1), the master metabolic sensor of the cell, belonging to the class of NAD+-dependent deacetylases. Our results revealed the following. 1) Treatments of human aortic smooth muscle cells (AoSMCs) with SIRT1 activators (SRT1720 and resveratrol) inhibit both HAS2 expression and accumulation of pericellular HA coats. 2) Tumor necrosis factor α (TNFα) induced HA-mediated monocyte adhesion and AoSMC migration, whereas SIRT1 activation prevented immune cell recruitment and cell motility by reducing the expression levels of the receptor for HA-mediated motility, RHAMM, and the HA-binding protein TNF-stimulated gene 6 protein (TSG6). 3) SIRT1 activation prevented nuclear translocation of NF-κB (p65), which, in turn, reduced the levels of HAS2-AS1, a long-noncoding RNA that epigenetically controls HAS2 mRNA expression. In conclusion, we demonstrate that both HAS2 expression and HA accumulation by AoSMCs are down-regulated by the metabolic sensor SIRT1.


Assuntos
Núcleo Celular/metabolismo , Regulação da Expressão Gênica , Hialuronan Sintases/genética , NF-kappa B/metabolismo , RNA Longo não Codificante/genética , Sirtuína 1/metabolismo , Aorta/citologia , Núcleo Celular/efeitos dos fármacos , Células Cultivadas , Citoproteção/efeitos dos fármacos , Matriz Extracelular/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Humanos , Hialuronan Sintases/metabolismo , Ácido Hialurônico/metabolismo , Inflamação/patologia , Modelos Biológicos , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Transporte Proteico/efeitos dos fármacos , Resveratrol/farmacologia , Fator de Necrose Tumoral alfa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA