Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mamm Genome ; 34(3): 379-388, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37154937

RESUMO

Experiments in which data are collected by multiple independent resources, including multicentre data, different laboratories within the same centre or with different operators, are challenging in design, data collection and interpretation. Indeed, inconsistent results across the resources are possible. In this paper, we propose a statistical solution for the problem of multi-resource consensus inferences when statistical results from different resources show variation in magnitude, directionality, and significance. Our proposed method allows combining the corrected p-values, effect sizes and the total number of centres into a global consensus score. We apply this method to obtain a consensus score for data collected by the International Mouse Phenotyping Consortium (IMPC) across 11 centres. We show the application of this method to detect sexual dimorphism in haematological data and discuss the suitability of the methodology.


Assuntos
Consenso , Camundongos , Animais , Coleta de Dados/métodos
2.
Nat Commun ; 13(1): 7502, 2022 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-36509767

RESUMO

Sex differences in the lifetime risk and expression of disease are well-known. Preclinical research targeted at improving treatment, increasing health span, and reducing the financial burden of health care, has mostly been conducted on male animals and cells. The extent to which sex differences in phenotypic traits are explained by sex differences in body weight remains unclear. We quantify sex differences in the allometric relationship between trait value and body weight for 363 phenotypic traits in male and female mice, recorded in >2 million measurements from the International Mouse Phenotyping Consortium. We find sex differences in allometric parameters (slope, intercept, residual SD) are common (73% traits). Body weight differences do not explain all sex differences in trait values but scaling by weight may be useful for some traits. Our results show sex differences in phenotypic traits are trait-specific, promoting case-specific approaches to drug dosage scaled by body weight in mice.


Assuntos
Caracteres Sexuais , Feminino , Camundongos , Masculino , Animais , Fenótipo , Peso Corporal , Tamanho Corporal
3.
Pain ; 163(6): 1139-1157, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35552317

RESUMO

ABSTRACT: Identifying the genetic determinants of pain is a scientific imperative given the magnitude of the global health burden that pain causes. Here, we report a genetic screen for nociception, performed under the auspices of the International Mouse Phenotyping Consortium. A biased set of 110 single-gene knockout mouse strains was screened for 1 or more nociception and hypersensitivity assays, including chemical nociception (formalin) and mechanical and thermal nociception (von Frey filaments and Hargreaves tests, respectively), with or without an inflammatory agent (complete Freund's adjuvant). We identified 13 single-gene knockout strains with altered nocifensive behavior in 1 or more assays. All these novel mouse models are openly available to the scientific community to study gene function. Two of the 13 genes (Gria1 and Htr3a) have been previously reported with nociception-related phenotypes in genetically engineered mouse strains and represent useful benchmarking standards. One of the 13 genes (Cnrip1) is known from human studies to play a role in pain modulation and the knockout mouse reported herein can be used to explore this function further. The remaining 10 genes (Abhd13, Alg6, BC048562, Cgnl1, Cp, Mmp16, Oxa1l, Tecpr2, Trim14, and Trim2) reveal novel pathways involved in nociception and may provide new knowledge to better understand genetic mechanisms of inflammatory pain and to serve as models for therapeutic target validation and drug development.


Assuntos
Nociceptividade , Dor , Animais , Adjuvante de Freund/toxicidade , Camundongos , Camundongos Knockout , Dor/genética , Medição da Dor
4.
Mamm Genome ; 33(1): 135-142, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34524473

RESUMO

Most current biomedical and protein research focuses only on a small proportion of genes, which results in a lost opportunity to identify new gene-disease associations and explore new opportunities for therapeutic intervention. The International Mouse Phenotyping Consortium (IMPC) focuses on elucidating gene function at scale for poorly characterized and/or under-studied genes. A key component of the IMPC initiative is the implementation of a broad phenotyping pipeline, which is facilitating the discovery of pleiotropy. Characterizing pleiotropy is essential to identify gene-disease associations, and it is of particular importance when elucidating the genetic causes of syndromic disorders. Here we show how the IMPC is effectively uncovering pleiotropy and how the new mouse models and gene function hypotheses generated by the IMPC are increasing our understanding of the mammalian genome, forming the basis of new research and identifying new gene-disease associations.


Assuntos
Genoma , Mamíferos , Animais , Modelos Animais de Doenças , Camundongos , Morbidade , Fenótipo
5.
PLoS One ; 15(12): e0242933, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33378393

RESUMO

Reproducibility in the statistical analyses of data from high-throughput phenotyping screens requires a robust and reliable analysis foundation that allows modelling of different possible statistical scenarios. Regular challenges are scalability and extensibility of the analysis software. In this manuscript, we describe OpenStats, a freely available software package that addresses these challenges. We show the performance of the software in a high-throughput phenomic pipeline in the International Mouse Phenotyping Consortium (IMPC) and compare the agreement of the results with the most similar implementation in the literature. OpenStats has significant improvements in speed and scalability compared to existing software packages including a 13-fold improvement in computational time to the current production analysis pipeline in the IMPC. Reduced complexity also promotes FAIR data analysis by providing transparency and benefiting other groups in reproducing and re-usability of the statistical methods and results. OpenStats is freely available under a Creative Commons license at www.bioconductor.org/packages/OpenStats.


Assuntos
Análise de Dados , Fenótipo , Software , Reprodutibilidade dos Testes
6.
Mamm Genome ; 31(1-2): 30-48, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32060626

RESUMO

The collaborative cross (CC) is a large panel of mouse-inbred lines derived from eight founder strains (NOD/ShiLtJ, NZO/HILtJ, A/J, C57BL/6J, 129S1/SvImJ, CAST/EiJ, PWK/PhJ, and WSB/EiJ). Here, we performed a comprehensive and comparative phenotyping screening to identify phenotypic differences and similarities between the eight founder strains. In total, more than 300 parameters including allergy, behavior, cardiovascular, clinical blood chemistry, dysmorphology, bone and cartilage, energy metabolism, eye and vision, immunology, lung function, neurology, nociception, and pathology were analyzed; in most traits from sixteen females and sixteen males. We identified over 270 parameters that were significantly different between strains. This study highlights the value of the founder and CC strains for phenotype-genotype associations of many genetic traits that are highly relevant to human diseases. All data described here are publicly available from the mouse phenome database for analyses and downloads.


Assuntos
Camundongos Endogâmicos/genética , Fenótipo , Animais , Camundongos de Cruzamento Colaborativo/genética , Bases de Dados Genéticas , Feminino , Estudos de Associação Genética , Genótipo , Masculino , Camundongos , Locos de Características Quantitativas , Especificidade da Espécie
7.
Nat Commun ; 11(1): 655, 2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-32005800

RESUMO

The identification of causal variants in sequencing studies remains a considerable challenge that can be partially addressed by new gene-specific knowledge. Here, we integrate measures of how essential a gene is to supporting life, as inferred from viability and phenotyping screens performed on knockout mice by the International Mouse Phenotyping Consortium and essentiality screens carried out on human cell lines. We propose a cross-species gene classification across the Full Spectrum of Intolerance to Loss-of-function (FUSIL) and demonstrate that genes in five mutually exclusive FUSIL categories have differing biological properties. Most notably, Mendelian disease genes, particularly those associated with developmental disorders, are highly overrepresented among genes non-essential for cell survival but required for organism development. After screening developmental disorder cases from three independent disease sequencing consortia, we identify potentially pathogenic variants in genes not previously associated with rare diseases. We therefore propose FUSIL as an efficient approach for disease gene discovery.


Assuntos
Doença/genética , Estudos de Associação Genética/métodos , Animais , Genes Essenciais , Genômica , Humanos , Camundongos , Camundongos Knockout
8.
Bioinformatics ; 36(5): 1492-1500, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31591642

RESUMO

MOTIVATION: High-throughput phenomic projects generate complex data from small treatment and large control groups that increase the power of the analyses but introduce variation over time. A method is needed to utlize a set of temporally local controls that maximizes analytic power while minimizing noise from unspecified environmental factors. RESULTS: Here we introduce 'soft windowing', a methodological approach that selects a window of time that includes the most appropriate controls for analysis. Using phenotype data from the International Mouse Phenotyping Consortium (IMPC), adaptive windows were applied such that control data collected proximally to mutants were assigned the maximal weight, while data collected earlier or later had less weight. We applied this method to IMPC data and compared the results with those obtained from a standard non-windowed approach. Validation was performed using a resampling approach in which we demonstrate a 10% reduction of false positives from 2.5 million analyses. We applied the method to our production analysis pipeline that establishes genotype-phenotype associations by comparing mutant versus control data. We report an increase of 30% in significant P-values, as well as linkage to 106 versus 99 disease models via phenotype overlap with the soft-windowed and non-windowed approaches, respectively, from a set of 2082 mutant mouse lines. Our method is generalizable and can benefit large-scale human phenomic projects such as the UK Biobank and the All of Us resources. AVAILABILITY AND IMPLEMENTATION: The method is freely available in the R package SmoothWin, available on CRAN http://CRAN.R-project.org/package=SmoothWin. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Saúde da População , Software , Animais , Estudos de Associação Genética , Humanos , Camundongos , Fenótipo
9.
Nat Commun ; 9(1): 288, 2018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-29348434

RESUMO

Metabolic diseases are a worldwide problem but the underlying genetic factors and their relevance to metabolic disease remain incompletely understood. Genome-wide research is needed to characterize so-far unannotated mammalian metabolic genes. Here, we generate and analyze metabolic phenotypic data of 2016 knockout mouse strains under the aegis of the International Mouse Phenotyping Consortium (IMPC) and find 974 gene knockouts with strong metabolic phenotypes. 429 of those had no previous link to metabolism and 51 genes remain functionally completely unannotated. We compared human orthologues of these uncharacterized genes in five GWAS consortia and indeed 23 candidate genes are associated with metabolic disease. We further identify common regulatory elements in promoters of candidate genes. As each regulatory element is composed of several transcription factor binding sites, our data reveal an extensive metabolic phenotype-associated network of co-regulated genes. Our systematic mouse phenotype analysis thus paves the way for full functional annotation of the genome.


Assuntos
Metabolismo Basal/genética , Glicemia/metabolismo , Peso Corporal/genética , Diabetes Mellitus Tipo 2/genética , Obesidade/genética , Consumo de Oxigênio/genética , Triglicerídeos/metabolismo , Animais , Área Sob a Curva , Redes Reguladoras de Genes , Estudo de Associação Genômica Ampla , Ensaios de Triagem em Larga Escala , Humanos , Doenças Metabólicas/genética , Camundongos , Camundongos Knockout , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA