Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Omega ; 7(18): 15637-15646, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35571776

RESUMO

This study aims to identify the major phytochemical constituents in Aquilaria malaccensis (Thymelaeaceae) ethanolic leaf extract (ALEX-M) and elucidate their ability to suppress nitric oxide (NO) production from a murine macrophage-like cell line (RAW 264.7) stimulated by lipopolysaccharide (LPS) and interferon-γ (IFN-γ). Dichloromethane (DCM) and ethyl acetate (EtOAc) fractions of ALEX-M were subjected to column chromatography. Eight known compounds were isolated for the first time from this species. Compounds were identified using spectroscopic techniques (IR, UV, HRESIMS, and 1D and 2D NMR). Anti-inflammatory activity of both extract and isolated compounds were investigated in vitro. The fractions offered the isolation of epifriedelanol (1), 5-hydroxy-7,4'-dimethoxyflavone (2), luteolin-7,3',4'-trimethyl ether (3), luteolin-7,4'-dimethyl ether (4), acacetin (5), aquilarinenside E (6), iriflophenone-2-O-α-l-rhamnopyranoside (7), and iriflophenone-3-C-ß-glucoside (8). The findings suggest the pharmacological potential of the crude extract (ALEX-M) and its isolates as natural anti-inflammatory agents, capable of suppressing NO production in RAW 264.7 cells stimulated by LPS/IFN-γ.

2.
Drug Deliv ; 28(1): 2618-2633, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34894947

RESUMO

Aquilaria malaccensis has been traditionally used to treat several medical disorders including inflammation. However, the traditional claims of this plant as an anti-inflammatory agent has not been substantially evaluated using modern scientific techniques. The main objective of this study was to evaluate the anti-inflammatory effect of Aquilaria malacensis leaf extract (ALEX-M) and potentiate its activity through nano-encapsulation. The extract-loaded nanocapsules were fabricated using water-in-oil-in-water (w/o/w) emulsion method and characterized via multiple techniques including DLS, TEM, FTIR, and TGA. The toxicity and the anti-inflammatory activity of ALEX-M and the extract-loaded nanocapsules (ALEX-M-PNCs) were evaluated in-vitro on RAW 264.7 macrophages and in-vivo on zebrafish embryos. The nanocapsules demonstrated spherical shape with mean particle diameter of 167.13 ± 1.24 nm, narrow size distribution (PDI = 0.29 ± 0.01), and high encapsulation efficiency (87.36 ± 1.81%). ALEX-M demonstrated high viability at high concentrations in RAW 264.7 cells and zebrafish embryos, however, ALEX-M-PNCs showed relatively higher cytotoxicity. Both free and nanoencapsulated extract expressed anti-inflammatory effects through significant reduction of the pro-inflammatory mediator nitric oxide (NO) production in LPS/IFNγ-stimulated RAW 264.7 macrophages and zebrafish embryos in a concentration-dependent manner. The findings highlight that ALEX-M can be recognized as a potential anti-inflammatory agent, and its anti-inflammatory activity can be potentiated by nano-encapsulation. Further studies are warranted toward investigation of the mechanistic and immunomodulatory roles of ALEX-M.


Assuntos
Anti-Inflamatórios/farmacologia , Inflamação/patologia , Nanocápsulas/química , Extratos Vegetais/farmacologia , Thymelaeaceae , Animais , Anti-Inflamatórios/administração & dosagem , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Liberação Controlada de Fármacos , Embrião não Mamífero , Mediadores da Inflamação/metabolismo , Macrófagos/efeitos dos fármacos , Camundongos , Óxido Nítrico/metabolismo , Tamanho da Partícula , Extratos Vegetais/administração & dosagem , Folhas de Planta , Células RAW 264.7 , Propriedades de Superfície , Peixe-Zebra
3.
Food Funct ; 5(7): 1513-9, 2014 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-24836598

RESUMO

The decreased cancer risk associated with consumption of olive oil may be due to the presence of phenolics which can modulate pathways including apoptosis and invasion that are relevant to carcinogenesis. We have previously shown that a virgin olive oil phenolics extract (OVP) inhibited invasion of HT115 colon cancer cells in vitro. In the current study we assessed the in vitro effects of OVP (25 µg mL(-1)) on HT115 cell migration, spreading and integrin expression. Furthermore, the anti-metastatic activity of OVP - at a dose equivalent to 25 mg per kg per day for 2, 8 or 10 weeks - was assessed in a Severe Combined ImmunoDeficiency (SCID) Balb-c mouse model. After 24 h OVP did not inhibit cell migration but significantly reduced cell spreading on fibronectin (65% of control; p < 0.05) and expression of a range of α and ß integrins was modulated. In vivo, OVP by gavage significantly (p < 0.05) decreased not only tumour volume but also the number of metastases in SCID Balb-c mice. Collectively, the data suggest that - possibly through modulation of integrin expression - OVP decreases invasion in vitro and also inhibits metastasis in vivo.


Assuntos
Antineoplásicos/farmacologia , Neoplasias do Colo/tratamento farmacológico , Fenóis/farmacologia , Extratos Vegetais/farmacologia , Óleos de Plantas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos SCID , Metástase Neoplásica , Azeite de Oliva
4.
Int J Cancer ; 122(3): 495-500, 2008 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-17943720

RESUMO

Studies in human, animal and cellular systems suggest that phenols from virgin olive oil are capable of inhibiting several stages in carcinogenesis, including metastasis. The invasion cascade comprises cell attachment to extracellular matrix components or basement membrane, degradation of basement membrane by proteolytic enzymes and migration of cells through the modified matrix. In the present study, we investigated the effect of phenolics extracted from virgin olive oil (OVP) and its main constituents: hydroxytyrosol (3,4-dihydroxyphenylethanol), tyrosol (p-hydroxyphenylethanol), pinoresinol and caffeic acid. The effects of these phenolics were tested on the invasion of HT115 human colon carcinoma cells in a Matrigel invasion assay. OVP and its compounds showed different dose-related anti-invasive effects. At 25 microg/ml OVP and equivalent doses of individual compounds, significant anti-invasive effects were seen in the range of 45-55% of control. Importantly, OVP, but not the isolated phenolics, significantly reduced total cell number in the Matrigel invasion assay. There were no significant effects shown on cell viability, indicating the reduction of cell number in the Matrigel invasion assay was not due to cytotoxicity. There were also no significant effects on cell attachment to plastic substrate, indicating the importance of extracellular matrix in modulating the anti-invasive effects of OVP. In conclusion, the results from this study indicate that phenols from virgin olive oil have the ability to inhibit invasion of colon cancer cells and the effects may be mediated at different levels of the invasion cascade.


Assuntos
Adenocarcinoma/tratamento farmacológico , Anticarcinógenos/uso terapêutico , Sobrevivência Celular/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Fenóis/uso terapêutico , Óleos de Plantas/uso terapêutico , Adenocarcinoma/prevenção & controle , Ácidos Cafeicos/uso terapêutico , Colágeno , Neoplasias do Colo/prevenção & controle , Combinação de Medicamentos , Humanos , Laminina/metabolismo , Invasividade Neoplásica , Azeite de Oliva , Álcool Feniletílico/análogos & derivados , Álcool Feniletílico/uso terapêutico , Proteoglicanas , Células Tumorais Cultivadas
5.
Nutr Rev ; 63(11): 374-86, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16370222

RESUMO

Olive oil contains a vast range of substances such as monounsaturated free fatty acids (e.g., oleic acid), hydrocarbon squalene, tocopherols, aroma components, and phenolic compounds. Higher consumption of olive oil is considered the hallmark of the traditional Mediterranean diet, which has been associated with low incidence and prevalence of cancer, including colorectal cancer. The anticancer properties of olive oil have been attributed to its high levels of monounsaturated fatty acids, squalene, tocopherols, and phenolic compounds. Nevertheless, there is a growing interest in studying the role of olive oil phenolics in carcinogenesis. This review aims to provide an overview of the relationship between olive oil phenolics and colorectal cancer, in particular summarizing the epidemiologic, in vitro, cellular, and animal studies on antioxidant and anticarcinogenic effects of olive oil phenolics.


Assuntos
Antioxidantes/química , Antioxidantes/uso terapêutico , Neoplasias Colorretais/prevenção & controle , Óleos de Plantas/química , Óleos de Plantas/uso terapêutico , Animais , Feminino , Humanos , Técnicas In Vitro , Masculino , Azeite de Oliva , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA