Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Heliyon ; 10(16): e36255, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39253246

RESUMO

Background: Altruistic cooperation (AC) is essential in human social interactions. Previous studies have investigated AC-related behavior in children with autism spectrum disorder (ASD), revealing that there is considerable individual variability in the behavior. However, this issue is still largely unexplored especially in the adult population. Aims: To investigate individual differences in AC-related behavior, we conducted the resource allocation task (RAT) and modified version of the ultimatum game (mUG) among adults with and without ASD. Methods and procedures: The study employed a cross-sectional design, involving 27 adults with ASD (mean age 29.1 ± 4.3 years; three females) and 27 adults with typical development (TD) (mean age 25.8 ± 6.7 years; two females), who completed the RAT and mUG tasks. Beyond clinical characteristics, we assessed three primary psychological metrics: the interpersonal reactivity index (IRI), Barratt impulsiveness scale, and the behavioral inhibition and activation systems. Outcomes and results: No significant differences were observed in the proportions of participants with high AC when assessed by RAT (p = 0.15) and mUG (p = 0.59) between the TD and ASD groups. Participants with high AC from the RAT demonstrated higher perspective-taking scores on the IRI than those with low AC within both the TD (p = 0.04) and ASD groups (p = 0.03). In the TD group, high AC individuals also scored higher on the IRI's fantasy subscale as per the mUG (p = 0.03); however, this trend was not present in the ASD group. Conclusions and implications: The present findings indicate that empathy plays an important role in individual differences in AC-related behavior among adults with and without ASD, although the role could be different depending on the types of AC-related behavior between TD and ASD populations.

2.
Cereb Cortex ; 34(9)2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39270675

RESUMO

The human auditory system includes discrete cortical patches and selective regions for processing voice information, including emotional prosody. Although behavioral evidence indicates individuals with autism spectrum disorder (ASD) have difficulties in recognizing emotional prosody, it remains understudied whether and how localized voice patches (VPs) and other voice-sensitive regions are functionally altered in processing prosody. This fMRI study investigated neural responses to prosodic voices in 25 adult males with ASD and 33 controls using voices of anger, sadness, and happiness with varying degrees of emotion. We used a functional region-of-interest analysis with an independent voice localizer to identify multiple VPs from combined ASD and control data. We observed a general response reduction to prosodic voices in specific VPs of left posterior temporal VP (TVP) and right middle TVP. Reduced cortical responses in right middle TVP were consistently correlated with the severity of autistic symptoms for all examined emotional prosodies. Moreover, representation similarity analysis revealed the reduced effect of emotional intensity in multivoxel activation patterns in left anterior superior temporal cortex only for sad prosody. These results indicate reduced response magnitudes to voice prosodies in specific TVPs and altered emotion intensity-dependent multivoxel activation patterns in adult ASDs, potentially underlying their socio-communicative difficulties.


Assuntos
Transtorno do Espectro Autista , Emoções , Imageamento por Ressonância Magnética , Lobo Temporal , Voz , Humanos , Masculino , Transtorno do Espectro Autista/fisiopatologia , Transtorno do Espectro Autista/diagnóstico por imagem , Transtorno do Espectro Autista/psicologia , Lobo Temporal/fisiopatologia , Lobo Temporal/diagnóstico por imagem , Adulto , Emoções/fisiologia , Adulto Jovem , Percepção da Fala/fisiologia , Mapeamento Encefálico/métodos , Estimulação Acústica , Percepção Auditiva/fisiologia
3.
Mol Psychiatry ; 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39342041

RESUMO

Autism spectrum disorder (ASD) is a lifelong condition with elusive biological mechanisms. The complexity of factors, including inter-site and developmental differences, hinders the development of a generalizable neuroimaging classifier for ASD. Here, we developed a classifier for ASD using a large-scale, multisite resting-state fMRI dataset of 730 Japanese adults, aiming to capture neural signatures that reflect pathophysiology at the functional network level, neurotransmitters, and clinical symptoms of the autistic brain. Our adult ASD classifier was successfully generalized to adults in the United States, Belgium, and Japan. The classifier further demonstrated its successful transportability to children and adolescents. The classifier contained 141 functional connections (FCs) that were important for discriminating individuals with ASD from typically developing controls. These FCs and their terminal brain regions were associated with difficulties in social interaction and dopamine and serotonin, respectively. Finally, we mapped attention-deficit/hyperactivity disorder (ADHD), schizophrenia (SCZ), and major depressive disorder (MDD) onto the biological axis defined by the ASD classifier. ADHD and SCZ, but not MDD, were located proximate to ASD on the biological dimensions. Our results revealed functional signatures of the ASD brain, grounded in molecular characteristics and clinical symptoms, achieving generalizability and transportability applicable to the evaluation of the biological continuity of related diseases.

4.
Brain Res Bull ; 205: 110827, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38013029

RESUMO

Developmental stuttering is a speech disfluency disorder characterized by repetitions, prolongations, and blocks of speech. While a number of neuroimaging studies have identified alterations in localized brain activation during speaking in persons with stuttering (PWS), it is unclear whether neuroimaging evidence converges on alterations in structural integrity of white matter and functional connectivity (FC) among multiple regions involved in supporting fluent speech. In the present study, we conducted coordinate-based meta-analyses according to the PRISMA guidelines for available publications that studied fractional anisotropy (FA) using tract-based spatial statistics (TBSS) for structural integrity and the seed-based voxel-wise FC analyses. The search retrieved 11 publications for the TBSS FA studies, 29 seed-based FC datasets from 6 publications for the resting-state, and 29 datasets from 6 publications for the task-based studies. The meta-analysis of TBSS FA revealed that PWS exhibited FA reductions in the middle and posterior segments of the left superior longitudinal fasciculus. Furthermore, the analysis of resting-state FC demonstrated that PWS had reduced FC in the right supplementary motor area and inferior parietal cortex, whereas an increase in FC was observed in the left cerebellum crus I. Conversely, we observed increased FC for task-based FC in regions implicated in speech production or sequential movements, including the anterior cingulate cortex, posterior insula, and bilateral cerebellum crus I in PWS. Functional network characterization of the altered FCs revealed that the sets of reduced resting-state and increased task-based FCs were largely distinct, but the somatomotor and striatum/thalamus networks were foci of alterations in both conditions. These observations indicate that developmental stuttering is characterized by structural and functional alterations in multiple brain networks that support speech fluency or sequential motor processes, including cortico-cortical and subcortical connections.


Assuntos
Gagueira , Substância Branca , Humanos , Substância Branca/diagnóstico por imagem , Gagueira/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Imagem de Tensor de Difusão , Cerebelo , Imageamento por Ressonância Magnética
5.
Mol Psychiatry ; 28(11): 4915-4923, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37596354

RESUMO

According to the operational diagnostic criteria, psychiatric disorders such as schizophrenia (SZ), bipolar disorder (BD), major depressive disorder (MDD), and autism spectrum disorder (ASD) are classified based on symptoms. While its cluster of symptoms defines each of these psychiatric disorders, there is also an overlap in symptoms between the disorders. We hypothesized that there are also similarities and differences in cortical structural neuroimaging features among these psychiatric disorders. T1-weighted magnetic resonance imaging scans were performed for 5,549 subjects recruited from 14 sites. Effect sizes were determined using a linear regression model within each protocol, and these effect sizes were meta-analyzed. The similarity of the differences in cortical thickness and surface area of each disorder group was calculated using cosine similarity, which was calculated from the effect sizes of each cortical regions. The thinnest cortex was found in SZ, followed by BD and MDD. The cosine similarity values between disorders were 0.943 for SZ and BD, 0.959 for SZ and MDD, and 0.943 for BD and MDD, which indicated that a common pattern of cortical thickness alterations was found among SZ, BD, and MDD. Additionally, a generally smaller cortical surface area was found in SZ and MDD than in BD, and the effect was larger in SZ. The cosine similarity values between disorders were 0.945 for SZ and MDD, 0.867 for SZ and ASD, and 0.811 for MDD and ASD, which indicated a common pattern of cortical surface area alterations among SZ, MDD, and ASD. Patterns of alterations in cortical thickness and surface area were revealed in the four major psychiatric disorders. To our knowledge, this is the first report of a cross-disorder analysis conducted on four major psychiatric disorders. Cross-disorder brain imaging research can help to advance our understanding of the pathogenesis of psychiatric disorders and common symptoms.


Assuntos
Transtorno do Espectro Autista , Transtorno Bipolar , Transtorno Depressivo Maior , Transtornos Mentais , Humanos , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/patologia , Transtorno do Espectro Autista/diagnóstico por imagem , Transtorno do Espectro Autista/patologia , Transtorno Bipolar/diagnóstico por imagem , Transtorno Bipolar/patologia , Transtornos Mentais/patologia , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/patologia , Imageamento por Ressonância Magnética/métodos
6.
Mol Psychiatry ; 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37537281

RESUMO

Differential diagnosis is sometimes difficult in practical psychiatric settings, in terms of using the current diagnostic system based on presenting symptoms and signs. The creation of a novel diagnostic system using objective biomarkers is expected to take place. Neuroimaging studies and others reported that subcortical brain structures are the hubs for various psycho-behavioral functions, while there are so far no neuroimaging data-driven clinical criteria overcoming limitations of the current diagnostic system, which would reflect cognitive/social functioning. Prior to the main analysis, we conducted a large-scale multisite study of subcortical volumetric and lateralization alterations in schizophrenia, bipolar disorder, major depressive disorder, and autism spectrum disorder using T1-weighted images of 5604 subjects (3078 controls and 2526 patients). We demonstrated larger lateral ventricles volume in schizophrenia, bipolar disorder, and major depressive disorder, smaller hippocampus volume in schizophrenia and bipolar disorder, and schizophrenia-specific smaller amygdala, thalamus, and accumbens volumes and larger caudate, putamen, and pallidum volumes. In addition, we observed a leftward alteration of lateralization for pallidum volume specifically in schizophrenia. Moreover, as our main objective, we clustered the 5,604 subjects based on subcortical volumes, and explored whether data-driven clustering results can explain cognitive/social functioning in the subcohorts. We showed a four-biotype classification, namely extremely (Brain Biotype [BB] 1) and moderately smaller limbic regions (BB2), larger basal ganglia (BB3), and normal volumes (BB4), being associated with cognitive/social functioning. Specifically, BB1 and BB2-3 were associated with severe and mild cognitive/social impairment, respectively, while BB4 was characterized by normal cognitive/social functioning. Our results may lead to the future creation of novel biological data-driven psychiatric diagnostic criteria, which may be expected to be useful for prediction or therapeutic selection.

7.
J Psychiatr Res ; 164: 322-328, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37393797

RESUMO

Individuals with autism spectrum disorder (ASD) often show limited empathy (poor recognition of others' emotions) and high alexithymia (poor recognition of own emotions and external thinking), which can negatively impact their social functioning. Previous experimental studies suggest that alterations in cognitive flexibility play key roles in the development of these characteristics in ASD. However, the underlying neural mechanisms that link cognitive flexibility and empathy/alexithymia are still largely unknown. In this study, we examined the neural correlates of cognitive flexibility via functional magnetic resonance imaging during perceptual task-switching in typical development (TD) adults and adults with ASD. We also investigated associations between regional neural activity and psychometric empathy and alexithymia scores among these populations. In the TD group, stronger activation of the left middle frontal gyrus was associated with better perceptual switching and greater empathic concern. Among individuals with ASD, stronger activation of the left inferior frontal gyrus was associated with better perceptual switching, greater empathy, and lower alexithymia. These findings will contribute to develop a better understanding of social cognition, and could be informative for the development of new ASD therapies.


Assuntos
Transtorno do Espectro Autista , Empatia , Adulto , Humanos , Sintomas Afetivos/diagnóstico por imagem , Sintomas Afetivos/etiologia , Transtorno do Espectro Autista/diagnóstico por imagem , Transtorno do Espectro Autista/psicologia , Emoções/fisiologia , Lobo Frontal , Imageamento por Ressonância Magnética
8.
Sci Rep ; 13(1): 11655, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37468523

RESUMO

Increased excitatory neuronal tones have been implicated in autism, but its mechanism remains elusive. The amplified glutamate signals may arise from enhanced glutamatergic circuits, which can be affected by astrocyte activation and suppressive signaling of dopamine neurotransmission. We tested this hypothesis using magnetic resonance spectroscopy and positron emission tomography scan with 11C-SCH23390 for dopamine D1 receptors in the anterior cingulate cortex (ACC). We enrolled 18 male adults with high-functioning autism and 20 typically developed (TD) male subjects. The autism group showed elevated glutamate, glutamine, and myo-inositol (mI) levels compared with the TD group (p = 0.045, p = 0.044, p = 0.030, respectively) and a positive correlation between glutamine and mI levels in the ACC (r = 0.54, p = 0.020). In autism and TD groups, ACC D1 receptor radioligand binding was negatively correlated with ACC glutamine levels (r = - 0.55, p = 0.022; r = - 0.58, p = 0.008, respectively). The enhanced glutamate-glutamine metabolism might be due to astroglial activation and the consequent reinforcement of glutamine synthesis in autistic brains. Glutamine synthesis could underly the physiological inhibitory control of dopaminergic D1 receptor signals. Our findings suggest a high neuron excitation-inhibition ratio with astrocytic activation in the etiology of autism.


Assuntos
Transtorno Autístico , Glutamina , Masculino , Adulto , Humanos , Glutamina/metabolismo , Ácido Glutâmico/metabolismo , Transtorno Autístico/metabolismo , Astrócitos/metabolismo , Dopamina/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Giro do Cíngulo/diagnóstico por imagem , Giro do Cíngulo/metabolismo
9.
Res Sq ; 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37292656

RESUMO

Autism spectrum disorder (ASD) is a lifelong condition, and its underlying biological mechanisms remain elusive. The complexity of various factors, including inter-site and development-related differences, makes it challenging to develop generalizable neuroimaging-based biomarkers for ASD. This study used a large-scale, multi-site dataset of 730 Japanese adults to develop a generalizable neuromarker for ASD across independent sites and different developmental stages. Our adult ASD neuromarker achieved successful generalization for the US and Belgium adults and Japanese adults. The neuromarker demonstrated significant generalization for children and adolescents. We identified 141 functional connections (FCs) important for discriminating individuals with ASD from TDCs. Finally, we mapped schizophrenia (SCZ) and major depressive disorder (MDD) onto the biological axis defined by the neuromarker and explored the biological continuity of ASD with SCZ and MDD. We observed that SCZ, but not MDD, was located proximate to ASD on the biological dimension defined by the ASD neuromarker. The successful generalization in multifarious datasets and the observed relations of ASD with SCZ on the biological dimensions provide new insights for a deeper understanding of ASD.

10.
bioRxiv ; 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37034620

RESUMO

Autism spectrum disorder (ASD) is a lifelong condition, and its underlying biological mechanisms remain elusive. The complexity of various factors, including inter-site and development-related differences, makes it challenging to develop generalizable neuroimaging-based biomarkers for ASD. This study used a large-scale, multi-site dataset of 730 Japanese adults to develop a generalizable neuromarker for ASD across independent sites (U.S., Belgium, and Japan) and different developmental stages (children and adolescents). Our adult ASD neuromarker achieved successful generalization for the US and Belgium adults (area under the curve [AUC] = 0.70) and Japanese adults (AUC = 0.81). The neuromarker demonstrated significant generalization for children (AUC = 0.66) and adolescents (AUC = 0.71; all P<0.05, family-wise-error corrected). We identified 141 functional connections (FCs) important for discriminating individuals with ASD from TDCs. These FCs largely centered on social brain regions such as the amygdala, hippocampus, dorsomedial and ventromedial prefrontal cortices, and temporal cortices. Finally, we mapped schizophrenia (SCZ) and major depressive disorder (MDD) onto the biological axis defined by the neuromarker and explored the biological continuity of ASD with SCZ and MDD. We observed that SCZ, but not MDD, was located proximate to ASD on the biological dimension defined by the ASD neuromarker. The successful generalization in multifarious datasets and the observed relations of ASD with SCZ on the biological dimensions provide new insights for a deeper understanding of ASD.

11.
Psychiatry Clin Neurosci ; 77(6): 345-354, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36905180

RESUMO

AIM: Increasing evidence suggests that psychiatric disorders are linked to alterations in the mesocorticolimbic dopamine-related circuits. However, the common and disease-specific alterations remain to be examined in schizophrenia (SCZ), major depressive disorder (MDD), and autism spectrum disorder (ASD). Thus, this study aimed to examine common and disease-specific features related to mesocorticolimbic circuits. METHODS: This study included 555 participants from four institutes with five scanners: 140 individuals with SCZ (45.0% female), 127 individuals with MDD (44.9%), 119 individuals with ASD (15.1%), and 169 healthy controls (HC) (34.9%). All participants underwent resting-state functional magnetic resonance imaging. A parametric empirical Bayes approach was adopted to compare estimated effective connectivity among groups. Intrinsic effective connectivity focusing on the mesocorticolimbic dopamine-related circuits including the ventral tegmental area (VTA), shell and core parts of the nucleus accumbens (NAc), and medial prefrontal cortex (mPFC) were examined using a dynamic causal modeling analysis across these psychiatric disorders. RESULTS: The excitatory shell-to-core connectivity was greater in all patients than in the HC group. The inhibitory shell-to-VTA and shell-to-mPFC connectivities were greater in the ASD group than in the HC, MDD, and SCZ groups. Furthermore, the VTA-to-core and VTA-to-shell connectivities were excitatory in the ASD group, while those connections were inhibitory in the HC, MDD, and SCZ groups. CONCLUSION: Impaired signaling in the mesocorticolimbic dopamine-related circuits could be an underlying neuropathogenesis of various psychiatric disorders. These findings will improve the understanding of unique neural alternations of each disorder and will facilitate identification of effective therapeutic targets.


Assuntos
Transtorno do Espectro Autista , Transtorno Depressivo Maior , Transtornos Mentais , Humanos , Feminino , Masculino , Transtorno Depressivo Maior/diagnóstico por imagem , Dopamina , Teorema de Bayes , Vias Neurais/diagnóstico por imagem , Imageamento por Ressonância Magnética , Córtex Pré-Frontal/diagnóstico por imagem , Transtornos Mentais/diagnóstico por imagem
12.
Sci Rep ; 12(1): 17740, 2022 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-36272990

RESUMO

Our motor system uses sensory feedback to keep desired performance. From this view, motor fluctuation is not simply 'noise' inevitably caused in the nervous system but would play a role in generating variations to explore better outcomes via sensory feedback. Vocalization system offers a good model for studying such sensory-motor interactions since we regulate vocalization by hearing our own voice. This behavior is typically observed as compensatory responses in vocalized pitch, or fundamental frequency (fo), when artificial fo shifts were induced in the auditory feedback. However, the relationship between adaptive regulation and motor exploration in vocalization has remained unclear. Here we investigated behavioral variability in spontaneous vocal fo and compensatory responses against fo shifts in the feedback, and demonstrated that larger spontaneous fluctuation correlates with greater compensation in vocal fo. This correlation was found in slow components (≤ 5 Hz) of the spontaneous fluctuation but not in fast components (between 6 and 30 Hz), and the slow one was amplified during the compensatory responses. Furthermore, the compensatory ratio was reduced when large fo shifts were applied to the auditory feedback, as if reflecting the range of motor exploration. All these findings consistently suggest the functional role of motor variability in the exploration of better vocal outcomes.


Assuntos
Retroalimentação Sensorial , Percepção da Altura Sonora , Percepção da Altura Sonora/fisiologia , Retroalimentação Sensorial/fisiologia , Retroalimentação , Estimulação Acústica
13.
Front Psychiatry ; 13: 884529, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36061271

RESUMO

Groups are essential elements of society, and humans, by nature, commonly manifest intergroup bias (i.e., behave more positively toward an ingroup member than toward an outgroup member). Despite the growing evidence of various types of altered decision-making in individuals with autism spectrum disorder (ASD), their behavior under the situation involving group membership remains largely unexplored. By modifying a third-party punishment paradigm, we investigated intergroup bias in individuals with ASD and typical development (TD). In our experiment, participants who were considered as the third party observed a dictator game wherein proposers could decide how to distribute a provided amount of money while receivers could only accept unconditionally. Participants were confronted with two different group situations: the proposer was an ingroup member and the recipient was an outgroup member (IN/OUT condition) or the proposer was an outgroup member and the recipient was an ingroup member (OUT/IN condition). Participants with TD punished proposers more severely when violating social norms in the OUT/IN condition than in IN/OUT condition, indicating that their decisions were influenced by the intergroup context. This intergroup bias was attenuated in individuals with ASD. Our findings deepen the understanding of altered decision-making and socioeconomic behaviors in individuals with ASD.

14.
Soc Cogn Affect Neurosci ; 17(10): 904-911, 2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-35333369

RESUMO

People make flexible decisions across a wide range of contexts to resolve social or moral conflicts. Individuals with autism spectrum disorder (ASD) frequently report difficulties in such behaviors, which hinders the flexibility in changing strategies during daily activities or adjustment of perspective during communication. However, the underlying mechanisms of this issue are insufficiently understood. This study aimed to investigate decision flexibility in ASD using a functional magnetic resonance imaging task that involved recognizing and resolving two types of moral dilemmas: cost-benefit analysis (CBA) and mitigating inevitable misconducts (MIM). The CBA session assessed the participants' pitting of result-oriented outcomes against distressful harmful actions, whereas the MIM session assessed their pitting of the extenuation of a criminal sentence against a sympathetic situation of defendants suffering from violence or disease. The behavioral outcome in CBA-related flexibility was significantly lower in the ASD group compared to that of the typical development group. In the corresponding CBA contrast, activation in the left inferior frontal gyrus was lower in the ASD group. Meanwhile, in the MIM-related flexibility, there were no significant group differences in behavioral outcome or brain activity. Our findings add to our understanding of flexible decision-making in ASD.


Assuntos
Transtorno do Espectro Autista , Imageamento por Ressonância Magnética , Transtorno do Espectro Autista/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Humanos , Imageamento por Ressonância Magnética/métodos , Princípios Morais
15.
Brain Behav ; 11(9): e2331, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34423588

RESUMO

BACKGROUND: Better life satisfaction (LS) is associated with better psychological and psychiatric outcomes. To the best of our knowledge, no studies have examined prediction models for LS. METHODS: Using resting-state functional magnetic resonance imaging (R-fMRI) data from the Human Connectome Project (HCP) Young Adult S1200 dataset, we examined whether LS is predictable from intrinsic functional connectivity (iFC). All the HCP data were subdivided into either discovery (n = 100) or validation (n = 766) datasets. Using R-fMRI data in the discovery dataset, we computed a matrix of iFCs between brain regions. Ridge regression, in combination with principal component analysis and 10-fold cross-validation, was used to predict LS. Prediction performance was evaluated by comparing actual and predicted LS scores. The generalizability of the prediction model obtained from the discovery dataset was evaluated by applying this model to the validation dataset. RESULTS: The model was able to successfully predict LS in the discovery dataset (r = 0.381, p < .001). The model was also able to successfully predict the degree of LS (r = 0.137, 5000-repetition permutation test p = .006) in the validation dataset, suggesting that our model is generalizable to the prediction of LS in young adults. iFCs stemming from visual, ventral attention, or limbic networks to other networks (such as the dorsal attention network and default mode network) were likely to contribute positively toward predicted LS scores. iFCs within ventral attention and limbic networks also positively contributed to predicting LS. On the other hand, iFCs stemming from the visual and cerebellar networks to other networks were likely to contribute negatively to the predicted LS scores. CONCLUSION: The present findings suggest that LS is predictable from the iFCs. These results are an important step toward identifying the neural basis of life satisfaction.


Assuntos
Conectoma , Encéfalo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Satisfação Pessoal , Adulto Jovem
17.
Neuropsychologia ; 152: 107750, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33417913

RESUMO

Individuals with autism spectrum disorder (ASD) are found to have difficulties in understanding speech in adverse conditions. In this study, we used noise-vocoded speech (VS) to investigate neural processing of degraded speech in individuals with ASD. We ran fMRI experiments in the ASD group and a typically developed control (TDC) group while they listened to clear speech (CS), VS, and spectrally rotated VS (SRVS), and they were requested to pay attention to the heard sentence and answer whether it was intelligible or not. The VS used in this experiment was spectrally degraded but still intelligible, but the SRVS was unintelligible. We recruited 21 right-handed adult males with ASD and 24 age-matched and right-handed male TDC participants for this experiment. Compared with the TDC group, we observed reduced functional connectivity (FC) between the left dorsal premotor cortex and left temporoparietal junction in the ASD group for the effect of task difficulty in speech processing, computed as VS-(CS + SRVS)/2. Furthermore, the observed reduced FC was negatively correlated with their Autism-Spectrum Quotient scores. This observation supports our hypothesis that the disrupted dorsal stream for attentive process of degraded speech in individuals with ASD might be related to their difficulty in understanding speech in adverse conditions.


Assuntos
Transtorno do Espectro Autista , Fala , Adulto , Transtorno do Espectro Autista/complicações , Transtorno do Espectro Autista/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Humanos , Imageamento por Ressonância Magnética , Masculino
18.
Brain Commun ; 2(2): fcaa186, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33381756

RESUMO

Symptoms of autism spectrum disorder and attention-deficit/hyperactivity disorder often co-occur. Among these, sensory impairment, which is a core diagnostic feature of autism spectrum disorder, is often observed in children with attention-deficit/hyperactivity disorder. However, the underlying mechanisms of symptoms that are shared across disorders remain unknown. To examine the neural correlates of sensory symptoms that are associated with autism spectrum disorder and attention-deficit/hyperactivity disorder, we analysed resting-state functional MRI data obtained from 113 people with either autism spectrum disorder or attention-deficit/hyperactivity disorder (n = 78 autism spectrum disorder, mean age = 29.5; n = 35 attention-deficit/hyperactivity disorder, mean age = 31.2) and 96 neurotypical controls (mean age = 30.6, range: 20-55 years) using a cross-sectional study design. First, we used a multi-dimensional approach to examine intrinsic brain functional connectivity related to sensory symptoms in four domains (i.e. low registration, sensation seeking, sensory sensitivity and sensation avoidance), after controlling for age, handedness and head motion. Then, we used a partial least squares correlation to examine the link between sensory symptoms related to intrinsic brain functional connectivity and neurodevelopmental symptoms measured using the Autism Spectrum Quotient and Conners' Adult Attention-Deficit/Hyperactivity Disorder Rating Scale, regardless of diagnosis. To test whether observed associations were specific to sensory symptoms related to intrinsic brain functional connectivity, we conducted a control analysis using a bootstrap framework. The results indicated that transdiagnostic yet distinct intrinsic brain functional connectivity neural bases varied according to the domain of the examined sensory symptom. Partial least squares correlation analysis revealed two latent components (latent component 1: q < 0.001 and latent component 2: q < 0.001). For latent component 1, a set of intrinsic brain functional connectivity was predominantly associated with neurodevelopmental symptom-related composite score (r = 0.64, P < 0.001), which was significantly correlated with Conners' Adult Attention-Deficit/Hyperactivity Disorder Rating Scale total T scores (r = -0.99, q < 0.001). For latent component 2, another set of intrinsic brain functional connectivity was positively associated with neurodevelopmental symptom-related composite score (r = 0.58, P < 0.001), which was eventually positively associated with Autism Spectrum Quotient total scores (r = 0.92, q < 0.001). The bootstrap analysis showed that the relationship between intrinsic brain functional connectivity and neurodevelopmental symptoms was relative to sensory symptom-related intrinsic brain functional connectivity (latent component 1: P = 0.003 and latent component 2: P < 0.001). The current results suggest that sensory symptoms in individuals with autism spectrum disorder and those with attention-deficit/hyperactivity disorder have shared neural correlates. The neural correlates of the sensory symptoms were associated with the severity of both autism spectrum disorder and attention-deficit/hyperactivity disorder symptoms, regardless of diagnosis.

20.
Mol Autism ; 11(1): 77, 2020 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-33070774

RESUMO

BACKGROUND: Autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD) have high rates of co-occurrence and share atypical behavioral characteristics, including sensory symptoms. The present diffusion tensor imaging (DTI) study was conducted to examine whether and how white matter alterations are observed in adult populations with developmental disorders (DD) and to determine how brain-sensory relationships are either shared between or distinct to ASD and ADHD. METHODS: We collected DTI data from adult population with DD (a primary diagnosis of ASD: n = 105, ADHD: n = 55) as well as age- and sex-matched typically developing (TD) participants (n = 58). Voxel-wise fractional anisotropy (FA), mean diffusivity, axial diffusivity, and radial diffusivity (RD) were analyzed using tract-based spatial statistics. The severities of sensory symptoms were assessed using the Adolescent/Adult Sensory Profile (AASP). RESULTS: Categorical analyses identified voxel clusters showing significant effects of DD on FA and RD in the posterior portion of the corpus callosum and its extension in the right hemisphere. Furthermore, regression analyses using the AASP scores revealed that slopes in relationships of FA or RD with the degree of sensory symptoms were parallel between the two DDs in large parts of the affected corpus callosum regions. A small but significant cluster did exist showing difference in association between an AASP subscale score and RD across ASD and ADHD. LIMITATIONS: Wide age range of the participants may be oversimplified. CONCLUSIONS: These results indicate that white matter alteration and their relationships to sensory symptoms are largely shared between ASD and ADHD, with localized abnormalities showing significant between-diagnosis differences within DD.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/patologia , Transtorno do Espectro Autista/patologia , Sensação , Substância Branca/patologia , Adulto , Fatores Etários , Anisotropia , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico por imagem , Transtorno do Espectro Autista/diagnóstico , Transtorno do Espectro Autista/diagnóstico por imagem , Imagem de Tensor de Difusão , Feminino , Humanos , Masculino , Substância Branca/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA