Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cell Rep Med ; 4(12): 101337, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38118404

RESUMO

Therapeutic angiogenesis using mesenchymal stem/stromal cell grafts have shown modest and controversial effects in preventing amputation for patients with critical limb ischemia. Through single-cell transcriptomic analysis of human tissues, we identify CD271+ progenitors specifically from subcutaneous adipose tissue (AT) as having the most prominent pro-angiogenic gene profile distinct from other stem cell populations. AT-CD271+ progenitors demonstrate robust in vivo angiogenic capacity over conventional adipose stromal cell grafts, characterized by long-term engraftment, augmented tissue regeneration, and significant recovery of blood flow in a xenograft model of limb ischemia. Mechanistically, the angiogenic capacity of CD271+ progenitors is dependent on functional CD271 and mTOR signaling. Notably, the number and angiogenic capacity of CD271+ progenitors are strikingly reduced in insulin-resistant donors. Our study highlights the identification of AT-CD271+ progenitors with in vivo superior efficacy for limb ischemia. Furthermore, we showcase comprehensive single-cell transcriptomics strategies for identification of suitable grafts for cell therapy.


Assuntos
Angiogênese , Perfilação da Expressão Gênica , Humanos , Adapaleno , Tecido Adiposo , Isquemia/genética
2.
bioRxiv ; 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36865239

RESUMO

Therapeutic angiogenesis using mesenchymal stem/stromal cell grafts have shown modest and controversial effects in preventing amputation for patients with critical limb ischemia. Through single-cell transcriptomic analysis of human tissues, we identified CD271 + progenitors specifically from subcutaneous adipose tissue (AT) as having the most prominent pro-angiogenic gene profile distinct from other stem cell populations. AT-CD271 + progenitors demonstrated robust in vivo angiogenic capacity, over conventional adipose stromal cell grafts, characterized by long-term engraftment, augmented tissue regeneration, and significant recovery of blood flow in a xenograft model of limb ischemia. Mechanistically, the angiogenic capacity of CD271 + progenitors is dependent on functional CD271 and mTOR signaling. Notably, the number and angiogenic capacity of CD271 + progenitors was strikingly reduced in insulin resistant donors. Our study highlights the identification of AT-CD271 + progenitors with in vivo superior efficacy for limb ischemia. Furthermore, we showcase comprehensive single-cell transcriptomics strategies for identification of suitable grafts for cell therapy. HIGHLIGHTS: Adipose tissue stromal cells have a distinct angiogenic gene profile among human cell sources. CD271 + progenitors in adipose tissue have a prominent angiogenic gene profile. CD271 + progenitors show superior therapeutic capacities for limb ischemia. CD271 + progenitors are reduced and functionally impaired in insulin resistant donors.

3.
Int J Mol Sci ; 24(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36768190

RESUMO

Pulmonary arterial hypertension (PAH) remains a disease with poor prognosis; thus, a new mechanism for PAH treatment is necessary. Circulating nerve growth factor receptor (Ngfr)-positive cells in peripheral blood mononuclear cells are associated with disease severity and the prognosis of PAH patients; however, the role of Ngfr in PAH is unknown. In this study, we evaluated the function of Ngfr using Ngfr gene-deletion (Ngfr-/-) mice. To elucidate the role of Ngfr in pulmonary hypertension (PH), we used Ngfr-/- mice that were exposed to chronic hypoxic conditions (10% O2) for 3 weeks. The development of hypoxia-induced PH was accelerated in Ngfr-/- mice compared to littermate controls. In contrast, the reconstitution of bone marrow (BM) in Ngfr-/- mice transplanted with wild-type BM cells improved PH. Notably, the exacerbation of PH in Ngfr-/- mice was accompanied by the upregulation of pulmonary vascular remodeling-related genes in lung tissue. In a hypoxia-induced PH model, Ngfr gene deletion resulted in PH exacerbation. This suggests that Ngfr may be a key molecule involved in the pathogenesis of PAH.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Animais , Camundongos , Hipertensão Pulmonar Primária Familiar/metabolismo , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/patologia , Hipóxia/metabolismo , Leucócitos Mononucleares/metabolismo , Pulmão/patologia , Hipertensão Arterial Pulmonar/metabolismo , Artéria Pulmonar/patologia , Receptor de Fator de Crescimento Neural/metabolismo , Remodelação Vascular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA