Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
ACS Pharmacol Transl Sci ; 7(9): 2706-2724, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39296259

RESUMO

The melanocortin receptors are a centrally and peripherally expressed family of Class A GPCRs with physiological roles, including pigmentation, steroidogenesis, energy homeostasis, and others yet to be fully characterized. There are five melanocortin receptor subtypes that, apart from the melanocortin-2 receptor (MC2R), are stimulated by a shared set of endogenous agonists. Until 2020, X-ray crystallographic and cryo-electron microscopic (cryo-EM) structures of these receptors were unavailable, and the investigation of their mechanisms of action and putative ligand-receptor interactions was driven by site-directed mutagenesis studies of the receptors and targeted structure-activity relationship (SAR) studies of the endogenous and derivative synthetic ligands. Synthetic derivatives of the endogenous agonist ligand α-MSH have evolved into a suite of powerful ligands such as NDP-MSH (melanotan I), melanotan II (MTII), and SHU9119. This suite of tool compounds now enables the study of the melanocortin receptors and serves as scaffolds for FDA-approved drugs, means of validating stably expressing melanocortin receptor cell lines, core ligands in assessing cryo-EM structures of active and inactive receptor complexes, and essential references for high-throughput discovery and mechanism of action studies. Herein, we review the history and significance of a finite set of these essential tool compounds and discuss how they are being utilized to further the field's understanding of melanocortin receptor physiology and greater druggability.

2.
ACS Med Chem Lett ; 15(4): 424-431, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38628790

RESUMO

As we celebrate International Women's Day 2024 with the theme "Inspire Inclusion", the women of the ACS Medicinal Chemistry Division (MEDI) want to foster a sense of belonging, relevance, and empowerment by sharing uplifting stories of what inspired them to become medicinal chemists. In this editorial, we are featuring female medicinal chemistry scientists to provide role models, encouragement, and inspiration to others. We asked women medicinal chemists to contribute a brief paragraph about what inspired them to become medicinal chemists or what inspires them today as medicinal chemists. The responses and contributions highlight their passions and motivations, such as their love of the sciences and their drive to improve human health by contributing to basic research and creating lifesaving drugs.

3.
ACS Pharmacol Transl Sci ; 7(4): 1114-1125, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38633589

RESUMO

Of the three Food and Drug Administration-approved melanocortin peptide drugs, two possess a cyclic scaffold, demonstrating that cyclized melanocortin peptides have therapeutic relevance. An extracyclic Arg residue, critical for pharmacological activity in the approved melanocortin cyclic drug setmelanotide, has also been demonstrated to increase the signal when fluorescently labeled cell-penetrating cyclic peptides are incubated with HeLa cells, with the maximal signal observed with three extracyclic Arg amino acids. Herein, a branching Lys residue was substituted into two macrocyclic melanocortin peptide agonists to incorporate 0-3 extracyclic Arg amino acids. Incorporation of the Arg residues resulted in equipotent or increased agonist potency at the mouse melanocortin receptors in vitro, suggesting that these substitutions were tolerated in the macrocyclic scaffolds. Further in vivo evaluation of one parent ligand (c[Pro-His-DPhe-Arg-Trp-Dap-Ala-Pro]) and the three Arg derivative (c[Pro-His-DPhe-Arg-Trp-Dap-Lys(Ac-Arg-Arg-Arg)-Pro)] demonstrated that the three Arg derivative further decreased food intake compared to the parent macrocycle when the compounds were administered either via intrathecal injection or subcutaneous dosing. This suggests that three extracyclic Arg amino acids may be beneficial in the design of cyclic melanocortin ligands and that in vitro pharmacological profiling may not predict the in vivo efficacy of melanocortin ligands.

4.
J Med Chem ; 67(6): 4251-4258, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38456628

RESUMO

As we celebrate International Women's Day 2024 with the theme "Inspire Inclusion", the women of the ACS Medicinal Chemistry Division (MEDI) want to foster a sense of belonging, relevance, and empowerment by sharing uplifting stories of what inspired them to become medicinal chemists. In this editorial, we are featuring female medicinal chemistry scientists to provide role models, encouragement, and inspiration to others. We asked women medicinal chemists to contribute a brief paragraph about what inspired them to become medicinal chemists or what inspires them today as medicinal chemists. The responses and contributions highlight their passions and motivations, such as their love of the sciences and their drive to improve human health by contributing to basic research and creating lifesaving drugs.


Assuntos
Química Farmacêutica , Poder Psicológico , Humanos , Feminino
5.
J Med Chem ; 66(12): 8103-8117, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37307241

RESUMO

Discovery of pan-antagonist ligands for the melanocortin receptors will help identify the physiological activities controlled by these receptors. The previously reported MC3R/MC4R antagonist Ac-DPhe(pI)-Arg-Nal(2')-Arg-NH2 was identified herein, for the first time, to possess MC1R and MC5R antagonist activity. Further structure-activity relationship studies probing the second and fourth positions were performed toward the goal of identifying potent melanocortin antagonists. Of the 21 tetrapeptides synthesized, 13 possessed MC1R, MC3R, MC4R, and MC5R antagonist activity. Three tetrapeptides were more than 10-fold selective for the mMC1R, including 8 (LTT1-44, Ac-DPhe(pI)-DArg-Nal(2')-Arg-NH2) that possessed 80 nM mMC1R antagonist potency and was at least 40-fold selective over the mMC3R, mMC4R, and mMC5R. Nine tetrapeptides were selective for the mMC4R, including 14 [SSM1-8, Ac-DPhe(pI)-Arg-Nal(2')-Orn-NH2] with an mMC4R antagonist potency of 1.6 nM. This compound was administered IT into mice, resulting in a dose-dependent increase in the food intake and demonstrating the in vivo utility of this compound series.


Assuntos
Melanocortinas , Receptor Tipo 3 de Melanocortina , Animais , Camundongos , Oligopeptídeos/química , Receptores de Melanocortina , Relação Estrutura-Atividade , Receptor Tipo 4 de Melanocortina
6.
Int J Mol Sci ; 24(12)2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37373293

RESUMO

The melanocortin receptors are involved in numerous physiological pathways, including appetite, skin and hair pigmentation, and steroidogenesis. In particular, the melanocortin-3 receptor (MC3R) is involved in fat storage, food intake, and energy homeostasis. Small-molecule ligands developed for the MC3R may serve as therapeutic lead compounds for treating disease states of energy disequilibrium. Herein, three previously reported pyrrolidine bis-cyclic guanidine compounds with five sites for molecular diversity (R1-R5) were subjected to parallel structure-activity relationship studies to identify the common pharmacophore of this scaffold series required for full agonism at the MC3R. The R2, R3, and R5 positions were required for full MC3R efficacy, while truncation of either the R1 or R4 positions in all three compounds resulted in full MC3R agonists. Two additional fragments, featuring molecular weights below 300 Da, were also identified that possessed full agonist efficacy and micromolar potencies at the mMC5R. These SAR experiments may be useful in generating new small-molecule ligands and chemical probes for the melanocortin receptors to help elucidate their roles in vivo and as therapeutic lead compounds.


Assuntos
Farmacóforo , Receptor Tipo 3 de Melanocortina , Receptor Tipo 3 de Melanocortina/agonistas , Receptor Tipo 3 de Melanocortina/metabolismo , Guanidina/farmacologia , Ligantes , Receptores de Melanocortina/metabolismo , Guanidinas , Relação Estrutura-Atividade
8.
ACS Omega ; 7(31): 27656-27663, 2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-35967074

RESUMO

The melanocortin family is involved in many physiological functions, including pigmentation, steroidogenesis, and appetite. The centrally expressed melanocortin-3 and melanocortin-4 receptors (MC3R and MC4R) possess overlapping but distinct roles in energy homeostasis. Herein, the third and fourth positions of a tetrapeptide lead compound [Ac-Arg-Arg-(pI)DPhe-Tic-NH2], previously reported to possess MC3R agonist and MC4R antagonist activities, were substituted with indoylated phenylalanine (Wsf/Wrf) residues in an attempt to generate receptor subtype selective compounds. At the third position, d-amino acids were required for melanocortin agonist activity, while both l- and d-residues resulted in MC4R antagonist activity. These results indicate that l-indoylated phenylalanine residues at the third position of the scaffold can generate MC4R over MC3R selective antagonist ligands, resulting in a substitution pattern that may be exploited for novel MC4R ligands that can be used to probe the in vivo activity of the MC4R without involvement of the MC3R.

9.
J Med Chem ; 64(19): 14860-14875, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34592820

RESUMO

The melanocortin-4 receptor (MC4R) plays an important role in appetite. Agonist ligands that stimulate the MC4R decrease appetite, while antagonist compounds increase food consumption. Herein, a functional mixture-based positional scan identified novel MC4R antagonist sequences. Mixtures comprising a library of 12,960,000 tetrapeptides were screened in the presence and absence of the NDP-MSH agonist. These results led to the synthesis of 48 individual tetrapeptides, of which 40 were screened for functional activity at the melanocortin receptors. Thirteen compounds were found to possess nanomolar antagonist potency at the MC4R, with the general tetrapeptide sequence Ac-Aromatic-Basic-Aromatic-Basic-NH2. The most notable results include the identification of tetrapeptide 48 [COR1-25, Ac-DPhe(pI)-Arg-Nal(2')-Arg-NH2], an equipotent MC4R antagonist to agouti-related protein [AGRP(86-132)], more potent than miniAGRP(87-120), and possessing 15-fold selectivity for the MC4R versus the MC3R. These tetrapeptides may serve as leads for novel appetite-inducing therapies to treat states of negative energy balance, such as cachexia and anorexia.


Assuntos
Proteína Relacionada com Agouti/farmacologia , Oligopeptídeos/farmacologia , Fragmentos de Peptídeos/farmacologia , Receptor Tipo 4 de Melanocortina/efeitos dos fármacos , Animais , Misturas Complexas , Ensaios de Triagem em Larga Escala , Humanos , Camundongos , Oligopeptídeos/química , Receptores de Melanocortina/efeitos dos fármacos , Relação Estrutura-Atividade
10.
J Med Chem ; 64(9): 5577-5592, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33886285

RESUMO

The central melanocortin-3 and melanocortin-4 receptors (MC3R, MC4R) are key regulators of body weight and energy homeostasis. Herein, the discovery and characterization of first-in-class small molecule melanocortin agonists with selectivity for the melanocortin-3 receptor over the melanocortin-4 receptor are reported. Identified via "unbiased" mixture-based high-throughput screening approaches, pharmacological evaluation of these pyrrolidine bis-cyclic guanidines resulted in nanomolar agonist activity at the melanocortin-3 receptor. The pharmacological profiles at the remaining melanocortin receptor subtypes tested indicated similar agonist potencies at both the melanocortin-1 and melanocortin-5 receptors and antagonist or micromolar agonist activities at the melanocortin-4 receptor. This group of small molecules represents a new area of chemical space for the melanocortin receptors with mixed receptor pharmacology profiles that may serve as novel lead compounds to modulate states of dysregulated energy balance.


Assuntos
Guanidina/metabolismo , Pirrolidinas/química , Receptor Tipo 3 de Melanocortina/agonistas , Algoritmos , Animais , Avaliação Pré-Clínica de Medicamentos , Metabolismo Energético/efeitos dos fármacos , Guanidina/análogos & derivados , Guanidina/farmacologia , Guanidina/uso terapêutico , Ensaios de Triagem em Larga Escala , Humanos , Camundongos , Camundongos Knockout , Isoformas de Proteínas/agonistas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Pirrolidinas/metabolismo , Pirrolidinas/farmacologia , Pirrolidinas/uso terapêutico , Receptor Tipo 3 de Melanocortina/genética , Receptor Tipo 3 de Melanocortina/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/uso terapêutico , Relação Estrutura-Atividade
11.
Mol Metab ; 48: 101206, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33684608

RESUMO

BACKGROUND: Over the past 20 years, insights from human and mouse genetics have illuminated the central role of the brain leptin-melanocortin pathway in controlling mammalian food intake, with genetic disruption resulting in extreme obesity, and more subtle polymorphic variations influencing the population distribution of body weight. At the end of 2020, the U.S. Food and Drug Administration (FDA) approved setmelanotide, a melanocortin 4 receptor agonist, for use in individuals with severe obesity due to either pro-opiomelanocortin (POMC), proprotein convertase subtilisin/kexin type 1 (PCSK1), or leptin receptor (LEPR) deficiency. SCOPE OF REVIEW: Herein, we chart the melanocortin pathway's history, explore its pharmacology, genetics, and physiology, and describe how a neuropeptidergic circuit became an important druggable obesity target. MAJOR CONCLUSIONS: Unravelling the genetics of the subset of severe obesity has revealed the importance of the melanocortin pathway in appetitive control; coupling this with studying the molecular pharmacology of compounds that bind melanocortin receptors has brought a new obesity drug to the market. This process provides a drug discovery template for complex disorders, which for setmelanotide took 25 years to transform from a single gene into an approved drug.


Assuntos
Fármacos Antiobesidade/uso terapêutico , Metabolismo Energético/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Melanocortinas/metabolismo , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Receptor Tipo 4 de Melanocortina/agonistas , Transdução de Sinais/efeitos dos fármacos , alfa-MSH/análogos & derivados , Animais , Fármacos Antiobesidade/farmacologia , Aprovação de Drogas/história , Descoberta de Drogas/história , História do Século XX , História do Século XXI , Humanos , Camundongos , Obesidade/epidemiologia , Receptor Tipo 4 de Melanocortina/metabolismo , Estados Unidos/epidemiologia , alfa-MSH/farmacologia , alfa-MSH/uso terapêutico
12.
J Invest Dermatol ; 141(7): 1819-1829, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33609553

RESUMO

Activation of the human melanocortin 1 receptor (hMC1R) expressed on melanocytes by α-melanocortin plays a central role in regulating human pigmentation and reducing the genotoxicity of UV by activating DNA repair and antioxidant defenses. For the development of a hMC1R-targeted photoprotection strategy, we designed tetra- and tripeptide agonists with modifications that provide the necessary lipophilicity and hMC1R selectivity to be effective drugs. These peptides proved to be superior to most of the existing analogs of the physiological tridecapeptide α-melanocortin because of their small size and high hMC1R selectivity. Testing on primary cultures of human melanocytes showed that these peptides are highly potent with prolonged stimulation of melanogenesis, enhanced repair of UV-induced DNA photoproducts, and reduced apoptosis. One of the tripeptides, designated as LK-514 (5), with a molecular weight of 660 Da, has unprecedented (>100,000) hMC1R selectivity when compared with the other melanocortin receptors hMC3R, hMC4R, and hMC5R, and increases pigmentation (sunless tanning) in a cultured, three-dimensional skin model. These new analogs should be efficacious in preventing skin cancer, including melanoma, and treatment of skin disorders, such as vitiligo and polymorphic light eruptions.


Assuntos
Dano ao DNA/efeitos dos fármacos , Fármacos Dermatológicos/farmacologia , Receptor Tipo 1 de Melanocortina/agonistas , Pigmentação da Pele/efeitos dos fármacos , Raios Ultravioleta/efeitos adversos , Células Cultivadas , Dano ao DNA/efeitos da radiação , Fármacos Dermatológicos/uso terapêutico , Humanos , Melanócitos/efeitos dos fármacos , Melanócitos/metabolismo , Melanócitos/efeitos da radiação , Melanoma/etiologia , Melanoma/prevenção & controle , Transtornos de Fotossensibilidade/tratamento farmacológico , Transtornos de Fotossensibilidade/genética , Cultura Primária de Células , Receptor Tipo 1 de Melanocortina/metabolismo , Pele/efeitos dos fármacos , Pele/efeitos da radiação , Dermatopatias Genéticas/tratamento farmacológico , Dermatopatias Genéticas/genética , Neoplasias Cutâneas/etiologia , Neoplasias Cutâneas/prevenção & controle , Pigmentação da Pele/efeitos da radiação , Vitiligo/tratamento farmacológico , Vitiligo/genética , alfa-MSH/metabolismo
13.
ACS Med Chem Lett ; 12(1): 115-120, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33488972

RESUMO

The five melanocortin receptors regulate numerous physiological functions. Although many ligands have been developed for the melanocortin-4 receptor (MC4R), the melanocortin-3 receptor (MC3R) has been less-well characterized, in part due to the lack of potent, selective tool compounds. Previously an Ac-His-Arg-(pI)DPhe-Tic-NH2 scaffold, inverting the Phe-Arg motif of the native melanocortin signal sequence, was identified to possess mMC3R over mMC4R selective agonist activity. In this study, a library of 12 compounds derived from this scaffold was synthesized and assayed at the mouse melanocortin receptors (MCRs), utilizing substitutions previously shown to increase mMC3R agonist potency and/or selectivity. One compound (8, Ac-Val-Gln-DBip-DTic-NH2) was identified as greater than 140-fold selective for the mMC3R over the mMC4R, possessed 70 nM potency at the mMC3R, and partially stimulated the mMC4R at 100 µM concentrations without antagonist activity. This pharmacological profile may be useful in developing new tool and therapeutic ligands that selective signal through the MC3R.

14.
ACS Chem Neurosci ; 12(3): 542-556, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33470098

RESUMO

The melanocortin receptors (MCRs) are important for numerous biological pathways, including feeding behavior and energy homeostasis. In addition to endogenous peptide agonists, this receptor family has two naturally occurring endogenous antagonists, agouti and agouti-related protein (AGRP). At the melanocortin-4 receptor (MC4R), the AGRP ligand functions as an endogenous inverse agonist in the absence of agonist and as a competitive antagonist in the presence of agonist. At the melanocortin-3 receptor (MC3R), AGRP functions solely as a competitive antagonist in the presence of agonist. The molecular interactions that differentiate AGRP's inverse agonist activity at the MC4R have remained elusive until the findings reported herein. Upon the basis of homology molecular modeling approaches, we previously postulated a unique interaction between the D189 position of the hMC4R and Asn114 of AGRP. To further test this hypothesis, six D189 mutant hMC4Rs (D189A, D189E, D189N, D189Q, D189S, and D189K) were generated and pharmacologically characterized resulting in the discovery of differences in inverse agonist activity of AGRP and an 11 macrocyclic compound library. These data support the hypothesized interaction between the hMC4R D189 position and Asn114 residue of AGRP and define critical ligand-receptor molecular interactions responsible for the inverse agonist activity of AGRP at the hMC4R.


Assuntos
Aminoácidos , Receptor Tipo 4 de Melanocortina , Proteína Relacionada com Agouti , Humanos , Receptor Tipo 3 de Melanocortina/genética , Receptor Tipo 4 de Melanocortina/genética , Receptores Acoplados a Proteínas G/genética , Receptores de Melanocortina
15.
ACS Med Chem Lett ; 11(10): 1942-1948, 2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-33062177

RESUMO

The melanocortin receptors are involved in numerous physiological functions and are regulated by agonists derived from the proopiomelanocortin gene transcript and two endogenous antagonists, agouti and agouti-related protein (AGRP). The key binding and functional determinant of AGRP, an MC3R and MC4R antagonist, is an Arg-Phe-Phe tripeptide sequence located on an exposed hexapeptide (Arg-Phe-Phe-Asn-Ala-Phe) loop. It has previously been observed that cyclizing this sequence through a DPro-Pro motif (c[Pro1-Arg2-Phe3-Phe4-Asn5-Ala6-Phe7-DPro8]) resulted in a macrocyclic scaffold with MC4R antagonist activity, with increased MC4R potency when a diaminopropionic acid (Dap) residue is substituted at position 5. In this report, a series of 11 single-peptoid substitutions were performed in the AGRP-derived macrocycles. While most peptoid substitutions decreased MC4R antagonist potency, it was observed that NPhe4 (compounds 4 and 11) or NDab5 (diaminobutyric acid, compound 7) maintained MC4R antagonist potency. The NPhe4 substitutions also resulted in MC5R antagonist and inverse agonist activity equipotent to the parent scaffolds. These data may be used in the design of future MC4R and MC5R antagonist leads and probes that possess increased metabolic stability due to the presence of peptoid residues.

16.
ACS Chem Neurosci ; 11(19): 3051-3063, 2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-32822157

RESUMO

There is a critical need to find safe therapeutics to treat an increasingly obese population and diseases associated with an imbalance in energy homeostasis. The melanocortin-3 receptor (MC3R) and melanocortin-4 receptor (MC4R) ligands have long been the focus to help scientists understand energy homeostasis and the regulation of feeding behavior. Herein, we use a nanomolar macrocyclic melanocortin receptor agonist ligand MDE6-5-2c (c[Pro-His-DPhe-Arg-Trp-Dap-Ala-DPro) to examine metabolic and energy hemostasis profiles upon intrathecal (IT) administration directly into the spinal cord as compared to intracerebroventricular (ICV) administration directly into the brain. Overall, central ICV administration of MDE6-5-2c resulted in decreased food intake, in a dose-dependent manner, and decreased respiratory exchange ratio (RER). Comparison of IT versus ICV routes of MDE6-5-2c administration resulted in MDE6-5-2c possessing a longer duration of action on both feeding behavior and RER via IT. The C-peptide, ghrelin, GIP, leptin, IL-6, and resistin plasma hormones and biomarkers were compared using IT versus ICV MDE6-5-2c routes of administration. Plasma resistin levels were decreased upon ICV treatment of MDE6-5-2c, as compared to ICV vehicle control treatment. Intrathecal treatment resulted in significantly decreased inflammatory cytokine interleukin-6 (IL-6) levels compared to ICV administration. Investigation of the nonselective MC3R and MC4R macrocyclic agonist MDE6-5-2c molecule revealed differences in food intake, RER, and plasma biomarker profiles based upon ICV or IT routes of administration and characterize this novel molecular chemotype as a molecular probe to study the melanocortin system in vivo.


Assuntos
Receptor Tipo 4 de Melanocortina , Receptores de Melanocortina , Animais , Ingestão de Alimentos , Homeostase , Ligantes , Camundongos , Receptor Tipo 3 de Melanocortina
17.
ACS Med Chem Lett ; 11(3): 272-277, 2020 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-32184956

RESUMO

The melanocortin receptors are stimulated by agonists (α-MSH, ß-MSH, γ-MSH, and ACTH) processed from the proopiomelanocortin (POMC) gene transcript and possess a common His-Phe-Arg-Trp tetrapeptide sequence critical for receptor activation. Deficiency in POMC signaling in humans is associated with adrenal insufficiency, altered pigmentation, and rapid, early onset weight gain. Herein, 12 single nucleotide polymorphisms (SNPs) deposited into the Variation Viewer database within the His-Phe-Arg-Trp sequences of ACTH/α-MSH, ß-MSH, and γ-MSH were substituted into tetrapeptide scaffolds to examine the in vitro signaling effects of these polymorphisms at the cloned melanocortin receptors. Every polymorphism decreased agonist potency and/or efficacy at the melanocortin receptors assayed, indicating that polymorphisms within the signaling sequence of POMC-derived agonists negatively impacts receptor activation. Future work to incorporate these substitutions into the full-length POMC agonists would confirm these findings, identifying new patient populations that might benefit from therapeutic regiments to treat POMC-deficient signaling.

18.
J Med Chem ; 63(5): 2194-2208, 2020 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-31845801

RESUMO

While the melanocortin receptors (MCRs) are known to be involved in numerous biological pathways, the potential roles of the MC5R have not been clearly elucidated in humans. Agouti-related protein (AgRP), an MC3R/MC4R antagonist and MC4R inverse agonist, contains an exposed ß-hairpin loop composed of six residues (Arg-Phe-Phe-Asn-Ala-Phe) that is imperative for binding and function. Within this active loop of AgRP, four human missense polymorphisms were deposited into the NIH Variation Viewer database. These polymorphisms, Arg111Cys, Arg111His, Phe112Tyr, and Ala115Val (AgRP full-length numbering), were incorporated into the peptide macrocycles c[Pro1-Arg2-Phe3-Phe4-Xaa5-Ala6-Phe7-dPro8], where Xaa was Dap5 or Asn5, to explore the functional effects of these naturally occurring substitutions in a simplified AgRP scaffold. All peptides lowered potency at least 10-fold in a cAMP accumulation assay compared to the parent sequences at the MC4Rs. Compounds MDE 6-82-3c, ZMK 2-82, MDE 6-82-1c, ZMK 2-85, and ZMK 2-112 are also the first AgRP-based chemotypes that antagonize the MC5R.


Assuntos
Proteína Relacionada com Agouti/farmacologia , Compostos Macrocíclicos/farmacologia , Peptídeos Cíclicos/farmacologia , Receptores de Melanocortina/antagonistas & inibidores , Proteína Relacionada com Agouti/química , Proteína Relacionada com Agouti/genética , Descoberta de Drogas , Humanos , Compostos Macrocíclicos/química , Simulação de Acoplamento Molecular , Peptídeos Cíclicos/química , Polimorfismo de Nucleotídeo Único , Receptor Tipo 4 de Melanocortina/antagonistas & inibidores
19.
Molecules ; 24(8)2019 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-31013889

RESUMO

The five melanocortin receptors (MC1R-MC5R) are involved in numerous biological pathways, including steroidogenesis, pigmentation, and food intake. In particular, MC3R and MC4R knockout mice suggest that the MC3R and MC4R regulate energy homeostasis in a non-redundant manner. While MC4R-selective agonists have been utilized as appetite modulating agents, the lack of MC3R-selective agonists has impeded progress in modulating this receptor in vivo. In this study, the (pI)DPhe position of the tetrapeptide Ac-His-Arg-(pI)DPhe-Tic-NH2 (an MC3R agonist/MC4R antagonist ligand) was investigated with a library of 12 compounds. The compounds in this library were found to have higher agonist efficacy and potency at the mouse (m) MC3R compared to the MC4R, indicating that the Arg-DPhe motif preferentially activates the mMC3R over the mMC4R. This observation may be used in the design of new MC3R-selective ligands, leading to novel probe and therapeutic lead compounds that will be useful for treating metabolic disorders.


Assuntos
Oligopeptídeos , Receptores de Melanocortina/agonistas , Animais , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Oligopeptídeos/síntese química , Oligopeptídeos/química , Oligopeptídeos/farmacologia , Receptores de Melanocortina/genética , Receptores de Melanocortina/metabolismo , Relação Estrutura-Atividade
20.
J Med Chem ; 62(5): 2738-2749, 2019 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-30741545

RESUMO

The centrally expressed melanocortin-3 and melanocortin-4 receptors (MC3R and MC4R, respectively) are established targets to treat diseases of positive- and negative-energy homeostasis. We previously reported [ Doering , S. R. ; J. Med. Chem. 2017 , 60 , 4342 - 4357 ] mixture-based positional scanning approaches to identify dual MC3R agonist and MC4R antagonist tetrapeptides. Herein, 46 tetrapeptides were chosen for MC3R agonist screening selectivity profiles, synthesized, and pharmacologically characterized at the mouse melanocortin-1, -3, -4, and -5 receptors. Substitutions to the tetrapeptide template were selected solely based on MC3R agonist potency from the mixture-based screen. This study resulted in the discovery of compound 42 (Ac-Val-Gln-(pI)DPhe-DTic-NH2), a full MC3R agonist that is 100-fold selective for the MC3R over the µM MC4R partial agonist pharmacology. This compound represents a first-in-class MC3R selective agonist. This ligand will serve as a useful in vivo molecular probe for the investigation of the roles of the MC3R and MC4R in diseases of dysregulated energy homeostasis.


Assuntos
Descoberta de Drogas , Sondas Moleculares , Receptor Tipo 3 de Melanocortina/agonistas , Receptor Tipo 4 de Melanocortina/agonistas , Animais , Camundongos , Polifarmacologia , Receptor Tipo 3 de Melanocortina/química , Receptor Tipo 4 de Melanocortina/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA