Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Biochim Biophys Acta Mol Cell Res ; 1871(5): 119731, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38631442

RESUMO

Molybdenum cofactor (Moco) biosynthesis is a complex process that involves the coordinated function of several proteins. In the recent years it has become evident that the availability of Fe-S clusters play an important role for the biosynthesis of Moco. First, the MoaA protein binds two [4Fe-4S] clusters per monomer. Second, the expression of the moaABCDE and moeAB operons is regulated by FNR, which senses the availability of oxygen via a functional [4Fe-4S] cluster. Finally, the conversion of cyclic pyranopterin monophosphate to molybdopterin requires the availability of the L-cysteine desulfurase IscS, which is an enzyme involved in the transfer of sulfur to various acceptor proteins with a main role in the assembly of Fe-S clusters. In this review, we dissect the dependence of the production of active molybdoenzymes in detail, starting from the regulation of gene expression and further explaining sulfur delivery and Fe-S cluster insertion into target enzymes. Further, Fe-S cluster assembly is also linked to iron availability. While the abundance of selected molybdoenzymes is largely decreased under iron-limiting conditions, we explain that the expression of the genes is dependent on an active FNR protein. FNR is a very important transcription factor that represents the master-switch for the expression of target genes in response to anaerobiosis. Moco biosynthesis is further directly dependent on the presence of ArcA and also on an active Fur protein.


Assuntos
Coenzimas , Proteínas Ferro-Enxofre , Metaloproteínas , Cofatores de Molibdênio , Pteridinas , Metaloproteínas/metabolismo , Metaloproteínas/genética , Metaloproteínas/biossíntese , Proteínas Ferro-Enxofre/metabolismo , Proteínas Ferro-Enxofre/genética , Coenzimas/metabolismo , Coenzimas/biossíntese , Coenzimas/genética , Pteridinas/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Ferro/metabolismo , Enxofre/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Liases de Carbono-Enxofre/metabolismo , Liases de Carbono-Enxofre/genética , Regulação Bacteriana da Expressão Gênica , Óperon , Isomerases
2.
Microbiol Spectr ; 12(2): e0348023, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38193660

RESUMO

The expression of most molybdoenzymes in Escherichia coli has so far been revealed to be regulated by anaerobiosis and requires the presence of iron, based on the necessity of the transcription factor FNR to bind one [4Fe-4S] cluster. One exception is trimethylamine-N-oxide reductase encoded by the torCAD operon, which has been described to be expressed independently from FNR. In contrast to other alternative anaerobic respiratory systems, the expression of the torCAD operon was shown not to be completely repressed by the presence of dioxygen. To date, the basis for the O2-dependent expression of the torCAD operon has been related to the abundance of the transcriptional regulator IscR, which represses the transcription of torS and torT, and is more abundant under aerobic conditions than under anaerobic conditions. In this study, we reinvestigated the regulation of the torCAD operon and its dependence on the presence of iron and identified a novel regulation that depends on the presence of the bis-molybdopterin guanine dinucleotide (bis-MGD) molybdenum cofactor . We confirmed that the torCAD operon is directly regulated by the heme-containing protein TorC and is indirectly regulated by ArcA and by the availability of iron via active FNR and Fur, both regulatory proteins that influence the synthesis of the molybdenum cofactor. Furthermore, we identified a novel regulation mode of torCAD expression that is dependent on cellular levels of bis-MGD and is not used by other bis-MGD-containing enzymes like nitrate reductase.IMPORTANCEIn bacteria, molybdoenzymes are crucial for anaerobic respiration using alternative electron acceptors. FNR is a very important transcription factor that represents the master switch for the expression of target genes in response to anaerobiosis. Only Escherichia coli trimethylamine-N-oxide (TMAO) reductase escapes this regulation by FNR. We identified that the expression of TMAO reductase is regulated by the amount of bis-molybdopterin guanine dinucleotide (bis-MGD) cofactor synthesized by the cell itself, representing a novel regulation pathway for the expression of an operon coding for a molybdoenzyme. Furthermore, TMAO reductase gene expression is indirectly regulated by the presence of iron, which is required for the production of the bis-MGD cofactor in the cell.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Metilaminas , Escherichia coli/genética , Ferro/metabolismo , Óperon , Proteínas de Escherichia coli/genética , Fatores de Transcrição/metabolismo , Oxirredutases/genética , Cofatores de Molibdênio , Óxidos/metabolismo , Anaerobiose , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica
3.
J Bacteriol ; 203(12): e0008621, 2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-33782054

RESUMO

Iron sulfur (Fe-S) clusters are important biological cofactors present in proteins with crucial biological functions, from photosynthesis to DNA repair, gene expression, and bioenergetic processes. For the insertion of Fe-S clusters into proteins, A-type carrier proteins have been identified. So far, three of them have been characterized in detail in Escherichia coli, namely, IscA, SufA, and ErpA, which were shown to partially replace each other in their roles in [4Fe-4S] cluster insertion into specific target proteins. To further expand the knowledge of [4Fe-4S] cluster insertion into proteins, we analyzed the complex Fe-S cluster-dependent network for the synthesis of the molybdenum cofactor (Moco) and the expression of genes encoding nitrate reductase in E. coli. Our studies include the identification of the A-type carrier proteins ErpA and IscA, involved in [4Fe-4S] cluster insertion into the radical S-adenosyl-methionine (SAM) enzyme MoaA. We show that ErpA and IscA can partially replace each other in their role to provide [4Fe-4S] clusters for MoaA. Since most genes expressing molybdoenzymes are regulated by the transcriptional regulator for fumarate and nitrate reduction (FNR) under anaerobic conditions, we also identified the proteins that are crucial to obtain an active FNR under conditions of nitrate respiration. We show that ErpA is essential for the FNR-dependent expression of the narGHJI operon, a role that cannot be compensated by IscA under the growth conditions tested. SufA does not appear to have a role in Fe-S cluster insertion into MoaA or FNR under anaerobic growth employing nitrate respiration, based on the low level of gene expression. IMPORTANCE Understanding the assembly of iron-sulfur (Fe-S) proteins is relevant to many fields, including nitrogen fixation, photosynthesis, bioenergetics, and gene regulation. Remaining critical gaps in our knowledge include how Fe-S clusters are transferred to their target proteins and how the specificity in this process is achieved, since different forms of Fe-S clusters need to be delivered to structurally highly diverse target proteins. Numerous Fe-S carrier proteins have been identified in prokaryotes like Escherichia coli, including ErpA, IscA, SufA, and NfuA. In addition, the diverse Fe-S cluster delivery proteins and their target proteins underlie a complex regulatory network of expression, to ensure that both proteins are synthesized under particular growth conditions.


Assuntos
Proteínas de Transporte/metabolismo , Coenzimas/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Proteínas Ferro-Enxofre/metabolismo , Isomerases/metabolismo , Metaloproteínas/metabolismo , Pteridinas/metabolismo , Proteínas de Transporte/genética , Proteínas de Escherichia coli/genética , Proteínas Ferro-Enxofre/genética , Isomerases/genética , Cofatores de Molibdênio , Família Multigênica , Nitrato Redutase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA