RESUMO
This research work aimed to identify the main components that are responsible for the sedative properties of hop cones and allocate their targets. This investigation was performed through molecular docking, molecular dynamic simulations, root mean square fluctuation (RMSF) analysis, and DFT calculation techniques. The tested compounds from Humulus lupulus were compared to diazepam and paroxetine. Molecular docking showed that two-thirds of the compounds had a good affinity to gamma-aminobutyric acid (GABA), outperforming diazepam, while only three surpassed paroxetine on the SERT. Compounds 3,5-dihydroxy-4,6,6-tris(3-methylbut-2-en-1-yl)-2-(3-methylbutanoyl)cyclohexa-2,4-dien-1-one (5) and (S,E)-8-(3,7-dimethylocta-2,6-dien-1-yl)-5,7-dihydroxy-2-(4-hydroxyphenyl)chromen-4-one (15) showed stable binding and favorable energy parameters, indicating their potential for targeting GABA receptors and the SERT. This study provides a basis for future clinical research on these promising compounds.
RESUMO
Design, synthesis, and biological evaluation of two series of O4'-benzyl-hispidol derivatives and the analogous corresponding O3'-benzyl derivatives aiming to develop selective monoamine oxidase-B inhibitors endowed with anti-neuroinflammatory activity is reported herein. The first O4'-benzyl-hispidol derivatives series afforded several more potentially active and MAO-B inhibitors than the O3'-benzyl derivatives series. The most potential compound 2e of O4'-benzyl derivatives elicited sub-micromolar MAO-B IC50 of 0.38 µM with a selectivity index >264 whereas most potential compound 3b of O3'-benzyl derivatives showed only 0.95 MAO-B IC50 and a selectivity index >105. Advancement of the most active compounds showing sub-micromolar activities to further cellular evaluations of viability and induced production of pro-neuroinflammatory mediators confirmed compound 2e as a potential lead compound inhibiting the production of the neuroinflammatory mediator nitric oxide significantly by microglial BV2 cells at 3 µM concentration without significant cytotoxicity up to 30 µM. In silico molecular docking study predicted plausible binding modes with MAO enzymes and provided insights at the molecular level. Overall, this report presents compound 2e as a potential lead compound to develop potential multifunctional compounds.
Assuntos
Simulação de Acoplamento Molecular , Inibidores da Monoaminoxidase , Monoaminoxidase , Inibidores da Monoaminoxidase/farmacologia , Inibidores da Monoaminoxidase/síntese química , Inibidores da Monoaminoxidase/química , Monoaminoxidase/metabolismo , Relação Estrutura-Atividade , Animais , Camundongos , Humanos , Estrutura Molecular , Linhagem Celular , Relação Dose-Resposta a Droga , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico/biossíntese , Óxido Nítrico/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/química , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/químicaRESUMO
Diabetes mellitus (DM) is the most prevalent cause of diabetic retinopathy (DRP). DRP has been recognized for a long time as a microvascular disease. Many drugs were used to treat DRP, including vildagliptin (VLD). In addition to its hypoglycemic effect, VLD minimizes ocular inflammation and improves retinal blood flow for individuals with type 2 diabetes mellitus. Nevertheless, VLD can cause upper respiratory tract infections, diarrhea, nausea, hypoglycemia, and poor tolerability when taken orally regularly due to its high water solubility and permeability. Effective ocular administration of VLD is achieved using solid lipid nanoparticles (SLNPs), which improve corneal absorption, prolonged retention, and extended drug release. Ocuserts (OCUs) are sterile, long-acting ocular dosage forms that diminish the need for frequent dosing while improving residence time and stability. Therefore, this study intends to develop VLD solid lipid nanoparticle OCUs (VLD-SLNPs-OCUs) to circumvent the issues commonly associated with VLD. SLNPs were prepared using the double-emulsion/melt dispersion technique. The optimal formula has been implemented in OCUs. Optimization and development of VLD-SLNPs-OCUs were performed using a Box-Behnken Design (BBD). VLD-SLNPs-OCUs loading efficiency was 95.28 ± 2.87%, and differential scanning calorimetry data (DSC) showed the full transformation of VLD to an amorphous state and the excellent distribution in the prepared OCUs matrices. The in vivo release of VLD from the optimized OCUs after 24 h was 35.12 ± 2.47%, consistent with in vitro drug release data of 36.89 ± 3.11. The optimized OCUs are safe to use in the eye, as shown by the ocular irritation test. VLD-SLNPs-OCUs provide extended VLD release, an advantageous alternative to conventional oral dose forms, resulting in fewer systemic adverse effects and less variation in plasma drug levels. VLD-SLNPs-OCUs might benefit retinal microvascular blood flow beyond blood glucose control and may be considered a promising approach to treating diabetic retinopathy.
RESUMO
A series of designed stilbenoid-flavanone hybrids featuring sp3-hybridized C2 and C3 atoms of C-ring was evaluated against colorectal cancers presented compounds 4, 17, and 20 as the most potential compounds among explored compounds. Evaluation of the anticancer activity spectrum of compounds 4, 17, and 20 against diverse solid tumors presented compounds 17 and 20 with interesting anticancer spectrum. The potencies of compounds 17 and 20 were assessed in comparison with FDA-approved anticancer drugs. Compound 17 was the, in general, the most potent showing low micromolar GI50 values that were more potent than the standard FDA-approved drugs against several solid tumors including colon, brain, skin, renal, prostate and breast tumors. Compound 17 was subjected for evaluation against normal cell lines and was subjected to a mechanism study in HCT116 colon cancer cells which presented it as an inhibitor of Wnt signaling pathway triggering G2/M cell cycle arrest though activation of p53-p21 pathway as well as intrinsic and extrinsic apoptotic death of colon cancer cells. Compound 17 might be a candidate for further development against diverse solid tumors including colon cancer.
Assuntos
Antineoplásicos , Neoplasias do Colo , Flavanonas , Iohexol/análogos & derivados , Estilbenos , Masculino , Humanos , Via de Sinalização Wnt , Estilbenos/farmacologia , Antineoplásicos/farmacologia , Células HCT116 , Flavanonas/farmacologia , Apoptose , Neoplasias do Colo/tratamento farmacológico , Proliferação de Células , Linhagem Celular Tumoral , beta Catenina/metabolismoRESUMO
Most fungal bone and joint infections (arthritis) are caused by Mucormycosis (Mucor indicus). These infections may be difficult to treat and may lead to chronic bone disorders and disabilities, thus the use of new antifungal materials in bone disorders is vital, particularly in immunocompromised individuals, such as those who have contracted coronavirus disease 2019 (COVID-19). Herein, we reported for the first time the preparation of nitrogen-doped carbon quantum dots (N/CQDs) and a nitrogen-doped mesoporous carbon (N/MC) using a quick micro-wave preparation and hydrothermal approach. The structure and morphology were analysed using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and surface area analyser. Minimum inhibitory concentration (MIC), disc diffusion tests, minimum fungicidal concentration (MFC) and antifungal inhibitory percentages were measured to investigate the antifungal activity of N/CQDs and N/MC nanostructures. In addition to the in vivo antifungal activity in rats as determined by wound induction and infection, pathogen count and histological studies were also performed. According to in vitro and in vivo testing, both N/CQDs with small size and N/MC with porous structure had a significant antifungal impact on a variety of bone-infecting bacteria, including Mucor infection. In conclusion, the present investigation demonstrates that functional N/CQDs and N/MC are effective antifungal agents against a range of microbial pathogenic bone disorders in immunocompromised individuals, with stronger and superior fungicidal activity for N/CQDs than N/MC in vitro and in vivo studies.
Assuntos
Mucormicose , Pontos Quânticos , Ratos , Animais , Pontos Quânticos/química , Antifúngicos/farmacologia , Carbono/farmacologia , Carbono/química , Nitrogênio/químicaRESUMO
Pin1 is a pivotal player in interactions with a diverse array of phosphorylated proteins closely linked to critical processes such as carcinogenesis and tumor suppression. Its axial role in cancer initiation and progression, coupled with its overexpression and activation in various cancers render it a potential candidate for the development of targeted therapeutics. While several known Pin1 inhibitors possess favorable enzymatic profiles, their cellular efficacy often falls short. Consequently, the pursuit of novel Pin1 inhibitors has gained considerable attention in the field of medicinal chemistry. In this study, we employed the Phase tool from Schrödinger to construct a structure-based pharmacophore model. Subsequently, 449,008 natural products (NPs) from the SN3 database underwent screening to identify compounds sharing pharmacophoric features with the native ligand. This resulted in 650 compounds, which then underwent molecular docking and binding free energy calculations. Among them, SN0021307, SN0449787 and SN0079231 showed better docking scores with values of -9.891, -7.579 and -7.097 kcal/mol, respectively than the reference compound (-6.064 kcal/mol). Also, SN0021307, SN0449787 and SN0079231 exhibited lower free binding energies (-57.12, -49.81 and -46.05 kcal/mol, respectively) than the reference ligand (-37.75 kcal/mol). Based on these studies, SN0021307, SN0449787, and SN0079231 showed better binding affinity that the reference compound. Further the validation of these findings, molecular dynamics simulations confirmed the stability of the ligand-receptor complex for 100 ns with RMSD ranging from 0.6 to 1.8 Å. Based on these promising results, these three phytochemicals emerge as promising lead compounds warranting comprehensive biological screening in future investigations. These compounds hold great potential for further exploration regarding their efficacy and safety as Pin1 inhibitors, which could usher in new avenues for combating cancer.
RESUMO
In this study, the chemical investigation of Tetraena aegyptia (Zygophyllaceae) led to the identification of a new megastigmene derivative, tetraenone A ((2S, 5R, 6R, 7E)-2-hydroxy-5,6-dihydro-ß-ionone) (1), along with (3S, 5R, 6S, 7E)-3-hydroxy-5,6-epoxy-5,6-dihydro-ß-ionone- (2), 3,4-dihydroxy-cinnamyl alcohol-4-glucoside (3), 3ß,19α-dihydroxy-ursan-28-oic acid (4), quinovic acid (5), p-coumaric acid (6), and ferulic acid (7), for the first time. The chemical structures of 1-7 were confirmed by analysis of their 1D and 2D NMR and HRESIMS spectra and by their comparison with the relevant literature. The absolute configurations of 1 and 2 were assigned based on NOESY interactions and ECD spectra. Conformational analysis showed that 1 existed exclusively in one of the two theoretically possible chair conformers with a predominant s-trans configuration for the 3-oxobut-1-en-1-yl group with the ring, while the half-chair conformer had a pseudo-axial hydroxy group that was predominant over the other half-chair conformation. Boat conformations were not among the most stable conformations, and the s-trans isomerism was in favor of s-cis configuration. In silico investigation revealed that 1 and 2 had more favorable binding interactions with Mpro rather than with TMPRSS2. Accordingly, molecular dynamic simulations were performed on the complexes of compounds 1 and 2 with Mpro to explore the stability of their interaction with the target protein structure. Compounds 1 and 2 might offer a possible starting point for developing covalent inhibitors of Mpro of SARS-CoV-2.
RESUMO
CDK2 is a key player in cell cycle processes. It has a crucial role in the progression of various cancers. Hepatocellular carcinoma (HCC) and colorectal cancer (CRC) are two common cancers that affect humans worldwide. The available therapeutic options suffer from many drawbacks including high toxicity and decreased specificity. Therefore, there is a need for more effective and safer therapeutic agents. A series of new pyrazolo[3,4-d]pyrimidine analogs was designed, synthesized, and evaluated as anticancer agents against the CRC and HCC cells, HCT116, and HepG2, respectively. Pyrazolo[3,4-d]pyrimidinone derivatives bearing N5-2-(4-halophenyl) acetamide substituents were identified as the most potent amongst evaluated compounds. Further evaluation of CDK2 kinase inhibition of two potential cytotoxic compounds 4a and 4b confirmed their CDK2 inhibitory activity. Compound 4a was more potent than the reference roscovitine regarding the CDK2 inhibitory activity (IC50 values: 0.21 and 0.25 µM, respectively). In silico molecular docking provided insights into the molecular interactions of compounds 4a and 4b with important amino acids within the ATP-binding site of CDK2 (Ile10, Leu83, and Leu134). Overall, compounds 4a and 4b were identified as interesting CDK2 inhibitors eliciting antiproliferative activity against the CRC and HCC cells, HCT116 and HepG2, respectively, for future further investigations and development.
RESUMO
A series of rosmarinic acid-ß-amino-α-ketoamide hybrids were synthesized and rationally repurposed towards the identification of new antileishmanial hit compounds. Two hybrids, 2g and 2h, showed promising activity (IC50 values of 9.5 and 8.8 µM against Leishmania donovani promastigotes, respectively). Their activities were comparable to erufosine. In addition, cytotoxicity evaluation employing human THP-1 cells revealed that the two hybrids 2g and 2h possess no cytotoxic effects up to 100 µM, while erufosine possessed cytotoxicity with CC50 value of 19.4 µM. In silico docking provided insights into structure-activity relationship emphasizing the importance of the aliphatic chain at the α-carbon of the cinnamoyl carbonyl group establishing favorable binding interactions with LdCALP and LARG in both hybrids 2g and 2h. In light of these findings, hybrids 2g and 2h are suggested as potential safe antileishmanial hit compounds for further development of anti-leishmanial agents.
RESUMO
A library of 24 congeners of the natural product sulfuretin were evaluated against nine panels representing nine cancer diseases. While sulfuretin elicited very weak activities at 10 µM concentration, congener 1t was identified as a potential compound triggering growth inhibition of diverse cell lines. Mechanistic studies in HCT116 colon cancer cells revealed that congener 1t dose-dependently increased levels of cleaved-caspases 8 and 9 and cleaved-PARP, while it concentration-dependently decreased levels of CDK4, CDK6, Cdc25A, and Cyclin D and E resulting in induction of cell cycle arrest and apoptosis in colon cancer HCT116 cells. Mechanistic study also presented MET receptor tyrosine kinase as the molecular target mediating the anticancer activity of compound 1t in HCT116 cells. In silico study predicted folded p-loop conformation as the form of MET receptor tyrosine kinase responsible for binding of compound 1t. Together, the current study presents compound 1t as an interesting anticancer lead for further development.
RESUMO
The inhibition of cell death, perturbation of microtubule dynamics, and acceleration of Wnt/ß-catenin/epithelial-mesenchymal transition (EMT) signaling are fundamental processes in the progression and metastasis of colorectal cancer (CRC). To explore the role of 2-stearoxyphenethyl phosphocholine (stPEPC), an alkylphospholipid-based compound, in CRC, we conducted an MTT assay, cell cycle analysis, western blot analysis, immunoprecipitation, immunofluorescence staining, Annexin V/propidium iodide double staining, small interfering RNA gene silencing, a wound-healing assay, an invasion assay, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay in the human CRC cell lines HT29 and HCT116. stPEPC showed anti-proliferative properties and mitotic cell accumulation via upregulated phosphorylation of BUBR1 and an association between mitotic arrest deficiency 2 (MAD2) and cell division cycle protein 20 homolog (CDC20). These results suggest that activation of the mitotic checkpoint complex and tubulin polymerization occurred, resulting in mitotic catastrophe in HT29 and HCT116 cells. In addition, stPEPC attenuated cell migration and invasion by regulating proteins mediated by EMT, such as E-cadherin and occludin. stPEPC altered the protein expression of Wnt3a and phosphorylation of low-density lipoprotein receptor-related protein 6 (LRP6), glycogen synthase kinase 3ß (GSK3ß), and ß-catenin as well as their target genes, including cMyc and cyclin D1, in CRC cells. Thus, stPEPC may be useful for developing new drugs to treat human CRC.
Assuntos
Neoplasias Colorretais , Fosforilcolina , Humanos , Linhagem Celular Tumoral , beta Catenina/metabolismo , Transição Epitelial-Mesenquimal/genética , Neoplasias Colorretais/patologia , Via de Sinalização Wnt/genética , Proteínas de Ciclo Celular/metabolismo , Movimento Celular/genética , Microtúbulos/metabolismo , Proliferação de Células/genética , Glicogênio Sintase Quinase 3 beta/metabolismoRESUMO
Conformational restriction was addressed towards the development of more selective and effective antileishmanial agents than currently used drugs for treatment of Leishmania donovani; the causative parasite of the fatal visceral leishmaniasis. Five types of cyclopentane-based conformationally restricted miltefosine analogs that were previously explored in literature as anticancer AKT-inhibitors were reprepared and repurposed as antileishmanial agents. Amongst, positions-1 and 2 cis-conformationally-restricted compound 1a and positions-2 and 3 trans-conformationally-restricted compound 3b were highly potent eliciting sub-micromolar IC50 values for inhibition of infection and inhibition of parasite number compared with the currently used miltefosine drug that showed low micromolar IC50 values for inhibition of infection and inhibition of parasite number. Compounds 1a and 3b eradicated the parasite without triggering host cells cytotoxicity over more than one log concentration interval which is a superior performance compared to miltefosine. In silico studies suggested that conformational restriction conserved the conformer capable of binding LdAKT-like kinase while it might be possible that it excludes other conformers mediating undesirable effects and/or toxicity of miltefosine. Together, this study presents compounds 1a and 3b as antileishmanial agents with superior performance over the currently used miltefosine drug.
Assuntos
Antiprotozoários , Leishmania donovani , Proteínas Proto-Oncogênicas c-akt , Ciclopentanos/farmacologia , Reposicionamento de Medicamentos , Antiprotozoários/químicaRESUMO
Nanotechnology holds substantial promise in the innovative therapies for rheumatoid arthritis (RA). The current study was designed to synthesize and characterize a new graphene titanate nanocomposite (GTNc) and explore its anti-arthritic, anti-inflammatory, and antioxidant potencies against Complete Freund's adjuvant (CFA)-induced arthritis in rats, as well as investigate the underlying molecular mechanisms. Our characterization methods included XRD, FT-IR, SEM, EDX, zeta potential, practical size, and XRF to characterize the novel GTNc. Our findings revealed that arthritic rats treated with GTNc exhibited lower levels of RF, CRP, IL-1ß, TNF-α, IL-17, and ADAMTS-5, and higher levels of IL-4 and TIMP-3. In arthritic rats, GTNc reduced LPO levels while increasing GSH content and GST antioxidant activity. Additionally, GTNc decreased the expression of the TGF-ß mRNA gene in arthritic rats. Histopathological investigation showed that GTNc reduced inflammatory cell infiltration, cartilage degradation, and bone destruction in joint injuries caused by CFA in the arthritic rats. Collectively, the anti-arthritic, anti-inflammatory, and antioxidant properties of GTNc appear promising for future arthritis treatments and bone disability research.
Assuntos
Artrite Experimental , Grafite , Ratos , Animais , Grafite/farmacologia , Antioxidantes/uso terapêutico , Espectroscopia de Infravermelho com Transformada de Fourier , Artrite Experimental/induzido quimicamente , Artrite Experimental/tratamento farmacológico , Artrite Experimental/metabolismo , Adjuvante de Freund/efeitos adversos , Anti-Inflamatórios/farmacologiaRESUMO
Wound healing is a significant healthcare problem that decreases the patient's quality of life. Hence, several agents and approaches have been widely used to help accelerate wound healing. The challenge is to search for a topical delivery system that could supply long-acting effects, accurate doses, and rapid healing activity. Topical forms of simvastatin (SMV) are beneficial in wound care. This study aimed to develop a novel topical chitosan-based platform of SMV with folic acid (FA) for wound healing. Moreover, the synergistic effect of combinations was determined in an excisional wound model in rats. The prepared SMV-FA-loaded films (SMV-FAPFs) were examined for their physicochemical characterizations and morphology. Box-Behnken Design and response surface methodology were used to evaluate the tensile strength and release characteristics of the prepared SMV-FAPFs. Additionally, Fourier transform infrared (FT-IR), differential scanning calorimetry (DSC), X-ray diffraction pattern (XRD), and animal studies were also investigated. The developed SMV-FAPFs showed a contraction of up to 80% decrease in the wound size after ten days. The results of the quantitative real-time polymerase chain reaction (RT-PCR) analysis demonstrated a significant upregulation of dermal collagen type I (CoTI) expression and downregulation of the inflammatory JAK3 expression in wounds treated with SMV-FAPFs when compared to control samples and individual drug treatments. In summary, it can be concluded that the utilization of SMV-FAPFs holds great potential for facilitating efficient and expeditious wound healing, hence presenting a feasible substitute for conventional topical administration methods.
RESUMO
The continuing need for the discovery of potent antibacterial agents against antibiotic-resistant pathogens is the driving force for many researchers to design and develop such agents. Herein, we report the design, synthesis, and biological evaluation of amidine derivatives as new antibacterial agents. Compound 13d was the most active in this study against a wide range of antibiotic-resistant, and susceptible, Gram-positive, and Gram-negative bacterial strains. Time-kill assay experiments indicated that compound 13d was an effective bactericidal compound against the tested organisms at the log-phase of bacterial growth. Docking simulations were performed to assess in silico its mode of action regarding UPPS, KARI, and DNA as potential bacterial targets. Results unveiled the importance of structural features of compound 13d in its biological activity including central thiophene ring equipped with left and right pyrrolo[2,3-b]pyridine and phenyl moieties and two terminal amidines cyclized into 4,5-dihydro-1H-imidazol-2-yl functionalities. Collectively, compound 13d represents a possible hit for future development of potent antibacterial agents.
RESUMO
A chromone-peptidyl hybrids series was synthesised and rationally repurposed towards identification of potential antileishmanial hits against visceral leishmaniasis. Three hybrids 7c, 7n, and 7h showed potential IC50 values (9.8, 10, and 12 µM, respectively) which were comparable to erufosine IC50 (9.8 µM) but lower potency than miltefosine IC50 (3.5 µM). Preliminary assessment of cytotoxicity using human THP-1 cells presented chromone-peptidyl hybrids 7c and 7n as non-cytotoxic up to 100 µM while erufosine and miltefosine had CC50 of 19.4 µM and >40 µM, respectively. In silico studies pinpointed the N-p-methoxyphenethyl substituent at the peptidyl moiety together with the oxygen-based substituted functions of the phenyl ring of the chromone moiety as crucial players in binding to LdCALP. Together, these findings present chromone-peptidyl hybrids 7c and 7n as potential and anticipated non-cytotoxic antileishmanial hit compounds for possible development of potential antileishmanial agents against visceral leishmaniasis.
Assuntos
Leishmania donovani , Leishmaniose Visceral , Humanos , CromonasRESUMO
New amide derivatives of the natural product 5,6,7-trimethoxyflavanone were designed as multifunctional antiproliferative molecules against blood cancer and the associated inflammatory conditions. The targeted compounds were synthesized efficiently in three linear steps employing known chalcone starting materials. Compounds 2h, 2i, 2l, 2t, 2v and 2x having bromo or nitro substituted-phenyl rings elicited potential inhibitory effects on macrophages production of nitric oxide, PGE2 and TNF-α which are proinflammatory mediators involved in tumorigenesis and progression of blood cancer. Additionally, evaluation of direct inhibitory effects on the growth of diverse blood cancers including leukemia, lymphoma, and myeloma cell lines unveiled compound 2v as the most potential molecules eliciting at least five-folds the potency of the standard imatinib drug over the used diverse blood cancers. Furthermore, compound 2v showed good selectivity to blood cancer cells rather than normal MRC5 cells. Moreover, compound 2v triggered death of HL60 leukemia cells via apoptosis induction. In conclusion, the natural product-derived compound 2v might serve as a multifunctional lead compound for further development of agents for treatment of blood cancers.
Assuntos
Antineoplásicos , Neoplasias Hematológicas , Leucemia , Neoplasias , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Anti-Inflamatórios/farmacologia , Neoplasias Hematológicas/tratamento farmacológico , Antineoplásicos/farmacologia , Proliferação de Células , Ensaios de Seleção de Medicamentos AntitumoraisRESUMO
Coronaviruses, including SARS-CoV-2, SARS-CoV, MERS-CoV and influenza A virus, require the host proteases to mediate viral entry into cells. Rather than targeting the continuously mutating viral proteins, targeting the conserved host-based entry mechanism could offer advantages. Nafamostat and camostat were discovered as covalent inhibitors of TMPRSS2 protease involved in viral entry. To circumvent their limitations, a reversible inhibitor might be required. Considering nafamostat structure and using pentamidine as a starting point, a small set of structurally diverse rigid analogues were designed and evaluated in silico to guide selection of compounds to be prepared for biological evaluation. Based on the results of in silico study, six compounds were prepared and evaluated in vitro. At the enzyme level, compounds 10-12 triggered potential TMPRSS2 inhibition with low micromolar IC50 concentrations, but they were less effective in cellular assays. Meanwhile, compound 14 did not trigger potential TMPRSS2 inhibition at the enzyme level, but it showed potential cellular activity regarding inhibition of membrane fusion with a low micromolar IC50 value of 10.87 µM, suggesting its action could be mediated by another molecular target. Furthermore, in vitro evaluation showed that compound 14 inhibited pseudovirus entry as well as thrombin and factor Xa. Together, this study presents compound 14 as a hit compound that might serve as a starting point for developing potential viral entry inhibitors with possible application against coronaviruses.
Assuntos
COVID-19 , Coronavírus da Síndrome Respiratória do Oriente Médio , Humanos , SARS-CoV-2 , Benzamidinas/farmacologia , Internalização do Vírus , Antivirais/farmacologia , Antivirais/químicaRESUMO
The majority of bone and joint infections are caused by Gram-positive organisms, specifically staphylococci. Additionally, gram-negative organisms such as E. coli can infect various organs through infected wounds. Fungal arthritis is a rare condition, with examples including Mucormycosis (Mucor rhizopus). These infections are difficult to treat, making the use of novel antibacterial materials for bone diseases crucial. Sodium titanate nanotubes (NaTNTs) were synthesized using the hydrothermal method and characterized using a Field Emission Scanning Electron Microscope (FESEM), High-Resolution Transmission Electron Microscope (HRTEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), Brunauer-Emmett-Teller (BET), and Zeta sizer. The antibacterial and antifungal activity of the NaTNT framework nanostructure was evaluated using Minimum Inhibitory Concentration (MIC), Minimum Bactericidal Concentration (MBC), Disc Diffusion assays for bacterial activity, and Minimum Fungicidal Concentration (MFC) for antifungal investigation. In addition to examining in vivo antibacterial activity in rats through wound induction and infection, pathogen counts and histological examinations were also conducted. In vitro and in vivo tests revealed that NaTNT has substantial antifungal and antibacterial effects on various bone-infected pathogens. In conclusion, current research indicates that NaTNT is an efficient antibacterial agent against a variety of microbial pathogenic bone diseases.
RESUMO
Oxidative catabolism of monoamine neurotransmitters by monoamine oxidases (MAOs) produces reactive oxygen species (ROS), which contributes to neuronal cells' death and also lowers monoamine neurotransmitter levels. In addition, acetylcholinesterase activity and neuroinflammation are involved in neurodegenerative diseases. Herein, we aim to achieve a multifunctional agent that inhibits the oxidative catabolism of monoamine neurotransmitters and, hence, the detrimental production of ROS while enhancing neurotransmitter levels. Such a multifunctional agent might also inhibit acetylcholinesterase and neuroinflammation. To meet this end goal, a series of aminoalkyl derivatives of analogs of the natural product hispidol were designed, synthesized, and evaluated against both monoamine oxidase-A (MAO-A) and monoamine oxidase-B (MAO-B). Promising MAO inhibitors were further checked for the inhibition of acetylcholinesterase and neuroinflammation. Among them, compounds 3aa and 3bc were identified as potential multifunctional molecules eliciting submicromolar selective MAO-B inhibition, low-micromolar AChE inhibition, and the inhibition of microglial PGE2 production. An evaluation of their effects on memory and cognitive impairments using a passive avoidance test confirmed the in vivo activity of compound 3bc, which showed comparable activity to donepezil. In silico molecular docking provided insights into the MAO and acetylcholinesterase inhibitory activities of compounds 3aa and 3bc. These findings suggest compound 3bc as a potential lead for the further development of agents against neurodegenerative diseases.