Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Vet Immunol Immunopathol ; 273: 110791, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38824909

RESUMO

Infectious bronchitis virus (IBV) strains of the Delmarva (DMV)/1639 genotype have been causing false layer syndrome (FLS) in the Eastern Canadian layer operations since the end of 2015. FLS is characterized by the development of cystic oviducts in layer pullets infected at an early age. Currently, there are no homologous vaccines for the control of this IBV genotype. Our previous research showed that a heterologous vaccination regimen incorporating Massachusetts (Mass) and Connecticut (Conn) IBV types protects layers against DMV/1639 genotype IBV. The aim of this study was to investigate the role of maternal antibodies conferred by breeders received the same vaccination regimen in the protection against the development of DMV/1639-induced FLS in pullets. Maternal antibody-positive (MA+) and maternal antibody-negative (MA-) female progeny chicks were challenged at 1 day of age and kept under observation for 16 weeks. Oviductal cystic formations were observed in 3 of 14 birds (21.4 %) in the MA- pullets, while the lesions were notably absent in the MA+ pullets. Milder histopathological lesions were observed in the examined tissues of the MA+ pullets. However, the maternal derived immunity failed to demonstrate protection against the damage to the tracheal ciliary activity, viral shedding, and viral tissue distribution. Overall, this study underscores the limitations of maternal derived immunity in preventing certain aspects of viral pathogenesis, emphasizing the need for comprehensive strategies to address different aspects of IBV infection.

2.
Viruses ; 16(3)2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38543692

RESUMO

Infectious bronchitis virus (IBV) induces severe economic losses in chicken farms due to the emergence of new variants leading to vaccine breaks. The studied IBV strains belong to Massachusetts (Mass), Canadian 4/91, and California (Cal) 1737 genotypes that are prevalent globally. This study was designed to compare the impact of these three IBV genotypes on primary and secondary lymphoid organs. For this purpose, one-week-old specific pathogen-free chickens were inoculated with Mass, Canadian 4/91, or Cal 1737 IBV variants, keeping a mock-infected control. We examined the IBV replication in primary and secondary lymphoid organs. The molecular, histopathological, and immunohistochemical examinations revealed significant differences in lesion scores and viral distribution in these immune organs. In addition, we observed B-cell depletion in the bursa of Fabricius and the spleen with a significant elevation of T cells in these organs. Further studies are required to determine the functional consequences of IBV replication in lymphoid organs.


Assuntos
Infecções por Coronavirus , Vírus da Bronquite Infecciosa , Doenças das Aves Domésticas , Vacinas Virais , Animais , Canadá , Galinhas , Vírus da Bronquite Infecciosa/genética , California , Genótipo , Massachusetts
3.
Front Vet Sci ; 11: 1338563, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38482170

RESUMO

Infectious bronchitis virus (IBV) is a respiratory virus causing atropism in multiple body systems of chickens. Recently, the California 1737/04 (CA1737/04) IBV strain was identified as one of the circulating IBV variants among poultry operations in North America. Here, the pathogenicity and tissue tropism of CA1737/04 IBV strain in specific-pathogen-free (SPF) hens were characterized in comparison to Massachusetts (Mass) IBV. In 30 weeks-old SPF hens, Mass or CA1737/04 IBV infections were carried out, while the third group was maintained as a control group. Following infection, we evaluated clinical signs, egg production, viral shedding, serology, necropsy examination, and histopathology during a period of 19 days. Also, certain tissue affinity parameters were investigated, which involved the localization of viral antigens and the detection of viral RNA copies in designated tissues. Our findings indicate that infection with CA1737/04 or Mass IBV strain could induce significant clinical signs, reduced egg production, and anti-IBV antibodies locally in oviduct wash and systemically in serum. Both IBV strains showed detectable levels of viral RNA copies and induced pathology in respiratory, renal, enteric, and reproductive tissues. However, the CA1737/04 IBV strain had higher pathogenicity, higher tissue tropism, and higher replication in the kidney, large intestine, and different segments of the oviduct compared to the Mass IBV strain. Both IBV strains shed viral genome from the cloacal route, however, the Mass IBV infected hens shed higher IBV genome loads via the oropharyngeal route compared to CA1737/04 IBV-infected hens. Overall, the current findings could contribute to a better understanding of CA1737/04 IBV pathogenicity in laying hens.

4.
J Gen Virol ; 105(1)2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38189432

RESUMO

Infectious bronchitis virus (IBV) is a significant respiratory pathogen that affects chickens worldwide. As an avian coronavirus, IBV leads to productive infection in chicken macrophages. However, the effects of IBV infection in macrophages on cyclooxygenase-2 (COX-2) expression are still to be elucidated. Therefore, we investigated the role of IBV infection on the production of COX-2, an enzyme involved in the synthesis of prostaglandin E2 (PGE2) in chicken macrophages. The chicken macrophage cells were infected with two IBV strains, and the cells and culture supernatants were harvested at predetermined time points to measure intracellular and extracellular IBV infection. IBV infection was quantified as has been the COX-2 and PGE2 productions. We found that IBV infection enhances COX-2 production at both mRNA and protein levels in chicken macrophages. When a selective COX-2 antagonist was used to reduce the COX-2 expression in macrophages, we observed that IBV replication decreased. When IBV-infected macrophages were treated with PGE2 receptor (EP2 and EP4) inhibitors, IBV replication was reduced. Upon utilizing a selective COX-2 antagonist to diminish PGE2 expression in macrophages, a discernible decrease in IBV replication was observed. Treatment of IBV-infected macrophages with a PGE2 receptor (EP2) inhibitor resulted in a reduction in IBV replication, whereas the introduction of exogenous PGE2 heightened viral replication. Additionally, pretreatment with a Janus-kinase two antagonist attenuated the inhibitory effect of recombinant chicken interferon (IFN)-γ on viral replication. The evaluation of immune mediators, such as inducible nitric oxide (NO) synthase (iNOS), NO, and interleukin (IL)-6, revealed enhanced expression following IBV infection of macrophages. In response to the inhibition of COX-2 and PGE2 receptors, we observed a reduction in the expressions of iNOS and IL-6 in macrophages, correlating with reduced IBV infection. Overall, IBV infection increased COX-2 and PGE2 production in addition to iNOS, NO, and IL-6 expression in chicken macrophages in a time-dependent manner. Inhibition of the COX-2/PGE2 pathway may lead to increased macrophage defence mechanisms against IBV infection, resulting in a reduction in viral replication and iNOS and IL-6 expressions. Understanding the molecular mechanisms underlying these processes may shed light on potential antiviral targets for controlling IBV infection.


Assuntos
Dinoprostona , Vírus da Bronquite Infecciosa , Animais , Ciclo-Oxigenase 2/genética , Interleucina-6/genética , Galinhas
5.
Virus Res ; 339: 199281, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-37995965

RESUMO

The emergence of the Canadian Delmarva (DMV)/1639 infectious bronchitis virus (IBV) type strains was associated with egg production disorders in Eastern Canadian layer operations. While developing vaccines for novel IBV variants is not typically a reasonable approach, the consideration of an autogenous vaccine becomes more appealing, particularly when the new variant presents significant economic challenges. The current study aimed to compare the efficacies of two vaccination programs that included heterologous live priming by Massachusetts (Mass) and Connecticut (Conn) type vaccines followed by either a commercial inactivated Mass type vaccine or a locally prepared autogenous inactivated DMV/1639 type vaccine against DMV/1639 IBV challenge. The protection parameters evaluated were egg production, viral shedding, dissemination of the virus in tissues, gross and microscopic lesions, and immunological responses. The challenge with the DMV/1639 caused severe consequences in the non-vaccinated laying hens including significant drop in egg production, production of low-quality eggs, serious damage to the reproductive organs, and yolk peritonitis. The two vaccination programs protected the layers from the poor egg-laying performance and the pathology. The vaccination program incorporating the autogenous inactivated DMV/1639 type vaccine was more effective in reducing vial loads in renal and reproductive tissues. This was associated with a higher virus neutralization titer compared to the group that received the commercial inactivated Mass type vaccine. Additionally, the autogenous vaccine boost led to a significant reduction in the viral shedding compared to the non-vaccinated laying hens. However, both vaccination programs induced significant level of protection considering all parameters examined. Overall, the findings from this study underscore the significance of IBV vaccination for protecting laying hens.


Assuntos
Autovacinas , Infecções por Coronavirus , Vírus da Bronquite Infecciosa , Doenças das Aves Domésticas , Vacinas Virais , Animais , Feminino , Galinhas , Vacinas de Produtos Inativados , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/veterinária , Canadá , Vacinas Atenuadas
6.
Viruses ; 15(12)2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-38140526

RESUMO

Infectious bronchitis virus (IBV) is an avian coronavirus that causes a disease in chickens known as infectious bronchitis (IB). The pathogenesis of IBV and the host immune responses against it depend on multiple factors such as the IBV variant, breed and age of the chicken, and the environment provided by the management. Since there is limited knowledge about the influence of the sex of chickens in the pathogenesis of IBV, in this study we aim to compare IBV pathogenesis and host immune responses in young male and female chickens. One-week-old specific pathogen-free (SPF) White Leghorn male and female chickens were infected with Canadian Delmarva (DMV)/1639 IBV variant at a dose of 1 × 106 embryo infectious dose (EID)50 by the oculo-nasal route while maintaining uninfected controls, and these chickens were euthanized and sampled 4- and 11-days post-infection (dpi). No significant difference was observed between the infected male and female chickens in IBV shedding, IBV genome load in the trachea, lung, kidney, bursa of Fabricius (BF), thymus, spleen, and cecal tonsils (CT), and IBV-induced lesion in all the examined tissues at both 4 and 11 dpi. In addition, there was no significant difference in the percentage of IBV immune-positive area observed between the infected male and female chickens in all tissues except for the kidney, which expressed an increased level of IBV antigen in infected males compared with females at both 4 and 11 dpi. The percentage of B lymphocytes was not significantly different between infected male and female chickens in all the examined tissues. The percentage of CD8+ T cells was not significantly different between infected male and female chickens in all the examined tissues except in the trachea at 11 dpi, where female chickens had higher recruitment when compared with male chickens. Overall, although most of the findings of this study suggest that the sex of chickens does not play a significant role in the pathogenesis of IBV and the host immune response in young chickens, marginal differences in viral replication and host responses could be observed to indicate that IBV-induced infection in male chickens is more severe.


Assuntos
Infecções por Coronavirus , Vírus da Bronquite Infecciosa , Doenças das Aves Domésticas , Animais , Masculino , Feminino , Galinhas , Vírus da Bronquite Infecciosa/fisiologia , Canadá , Traqueia , Imunidade
7.
Virology ; 587: 109852, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37531823

RESUMO

Infectious bronchitis virus (IBV) that primarily causes respiratory infection in chickens, disseminate to multiple body systems leading to pathology, results in economic losses to poultry industry. IBV replicates in the bursa of Fabricius (BF), Harderian gland (HG), cecal tonsils (CT), and spleen. The objective of this study was to investigate the immunosuppressive effect of IBV Delmarva (DMV/1639) variant in chickens. Specific pathogen free chickens were infected with the IBV DMV/1639 variant while maintaining an age-matched uninfected control group. At predetermined time points, subsets of the infected and control chickens were observed for changes in body weights and pathological changes. The histopathological lesions were observed in the CT and BF, with minimal lesions in the thymus and spleen. The mRNA expression of pro-inflammatory mediators suggested immunomodulation by IBV, favoring viral replication. Further studies are warranted to observe the functional impact of the IBV DMV/1639 variant's replication in immune organs.

8.
Vaccines (Basel) ; 11(7)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37515032

RESUMO

Infectious bronchitis virus (IBV) causes infectious bronchitis disease in chickens. IBV primarily infects the upper respiratory tract and then disseminates to other body systems including gastrointestinal, reproductive, and urinary systems. Unlike original IBV serotypes, the novel IBV variants target lymphoid organs, but information on this is scarce. In this study, we aim to evaluate the impact of the presence of maternal antibodies on IBV infection in primary and secondary lymphoid organs. Maternal antibody free, specific pathogen free (SPF) hens were divided into vaccinated and non-vaccinated groups. The progeny male chicks from these hens were divided into four groups; vaccinated challenged (VC), non-vaccinated challenged (NVC), vaccinated non-challenged (VNC), and non-vaccinated non-challenged (NVNC). The challenge groups were given 1 × 106 embryo infectious dose (EID)50 of IBV Delmarva (DMV)/1639 by the oculo-nasal route and non-challenge groups were given saline. The serum anti-IBV antibody titer was significantly higher in challenged groups compared to non-challenged groups. The IBV genome load was significantly lower in the VC group than NVC group in oropharyngeal and cloacal swabs and in bursa of Fabricius (BF) and cecal tonsils (CT). The histopathological lesion scores were significantly lower in VC group than NVC group in BF and CT. These findings suggest that the presence of maternal antibody in chicks could provide some degree of protection against IBV infection in BF and CT.

9.
Vet Immunol Immunopathol ; 261: 110623, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37364440

RESUMO

Infectious bronchitis virus (IBV) infection can be associated with respiratory, renal, and/or reproductive diseases in chickens. Under natural conditions, conjunctiva, mucosa of upper respiratory tract, and cloaca are the main routes of IBV entry. Experimentally, the study of IBV infection involved various routes of inoculation. This study investigated the impact of adding the trachea as a potential route of viral entry to the oculo-nasal infection on the host responses, pathogenicity, and tissue tropism of the Canadian IBV Delmarva (DMV/1639) strain in laying chickens. Specific-pathogen-free laying chickens were divided into three experimental groups: control group (Con group), oculo-nasal challenged group (ON group), and oculo-nasal/intratracheal challenged group (ON/IT group); all groups were observed for 12 days post-infection (dpi). The clinical signs and reduction in egg production in the ON/IT group started slightly earlier compared to the ON group. At 12 dpi, the gross lesions in the ON/IT group were confined to the ovary, while the ON group showed regressed ovary and atrophied oviduct. Only the ON group showed significantly higher microscopic lesion scores in the lung, kidney, magnum, and uterus compared to the control group at 12 dpi. The oviduct tissues of the ON group showed a significant increase in B cells infiltration compared to ON/IT and control groups. The viral shedding (detected by quantitative reverse transcription polymerase chain reaction (qRT-PCR)), tissue tropism (detected either by qRT-PCR or immunohistochemistry (IHC)), T/natural killer cells infiltration in reproductive tract (detected by IHC), and antibody-mediated immune responses (measured by enzyme-linked immunosorbent assay) showed similar patterns in the ON and ON/IT groups.


Assuntos
Infecções por Coronavirus , Vírus da Bronquite Infecciosa , Doenças das Aves Domésticas , Feminino , Animais , Galinhas , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/diagnóstico , Canadá , Imunidade
10.
Vaccines (Basel) ; 11(2)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36851216

RESUMO

Vaccination remains the leading control method against infectious bronchitis (IB) in poultry despite the frequently observed IB outbreaks in vaccinated flocks. Here, two vaccination regimes were evaluated against challenge with the Massachusetts (Mass) infectious bronchitis virus (IBV) strain that was linked to egg production defects in Western Canada. One vaccination strategy included live attenuated IB vaccines only, and the other used both inactivated and live attenuated IB vaccines. The two immunization programs involved priming with a monovalent live attenuated IB vaccine (Mass serotype) at day-old, followed by intervals of bivalent live attenuated IB vaccines containing the Mass and Connecticut (Conn) serotypes given to the pullets at 2-, 5-, 9-, and 14-week-old. Inactivated IB vaccine (Mass serotype) was administrated to only one group of the vaccinated birds at 14-week-old. At the peak of lay, the hens were challenged with the Mass IBV isolate (15AB-01) via the oculo-nasal route. The efficacy of the vaccines was assessed following the challenge by observing clinical signs, egg production, egg quality parameters, seroconversion, and systemic T-cell subsets (CD4+ and CD8+ cells). Moreover, the viral genome loads in the oropharyngeal (OP) and cloacal (CL) swabs were quantified at predetermined time points. At 14 days post-infection (dpi), all the hens were euthanized, and different tissues were collected for genome load quantification and histopathological examination. Post-challenge, both vaccination regimes showed protection against clinical signs and exhibited significantly higher albumen parameters, higher anti-IBV serum antibodies, and significantly lower levels of IBV genome loads in OP swabs (at 3 and 7 dpi) and trachea and cecal tonsils compared to the mock-vaccinated challenged group. However, only the birds that received live attenuated plus inactivated IB vaccines had significantly lower IBV genome loads in CL swabs at 7 dpi, as well as decreased histopathological lesion scores and IBV genome loads in magnum compared to the mock-vaccinated challenged group, suggesting a slightly better performance for using live attenuated and inactivated IB vaccines in combination. Overall, the present findings show no significant difference in protection between the two vaccination regimes against the Mass IBV challenge in laying hens.

11.
Front Vet Sci ; 10: 1329430, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38313768

RESUMO

Infectious bronchitis (IB) is a highly contagious and acute viral disease of chicken caused by the infectious bronchitis virus (IBV) of the family Coronaviridae. Even with extensive vaccination against IB by the poultry industry, the occurrence of new IBV genotypes is a continuous challenge encountered by the global poultry industry. This experiment was designed to compare the pathogenicity of two IBV strains belonging to Massachusetts (Mass) and Delmarva DMV/1639 genotypes. Specific pathogen-free laying hens were challenged during the peak of production (30 weeks), keeping a mock-infected control group. During 21 days of observation following infection, a significant drop in egg production with miss-shaped and soft shells was observed in the DMV/1639 IBV-infected hens only. The DMV/1639 IBV infected group showed prolonged and higher cloacal viral shedding compared with the Mass IBV-infected group. At the end of the study (21 days post-infection), the viral genome loads in the respiratory, urogenital, and immune tissues were significantly higher in the DMV/1639 IBV-infected group compared with the Mass IBV-infected group. Macroscopic lesions such as distorted ova leading to egg peritonitis were observed only in the DMV/1639 IBV-infected group. Moreover, microscopic lesion scores were significantly higher in the lung, kidney, cecal tonsils, and oviduct of the DMV/1639 IBV-infected group compared with the Mass IBV-infected group. Finally, the apoptosis index in the kidney, ovary, magnum, isthmus, and shell gland was significantly higher in the DMV/1639 IBV-infected group compared with the control and Mass-infected groups. This study examined the pathogenicity of two IBV genotypes that are impacting the layer industry in North America.

12.
Vaccines (Basel) ; 10(8)2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-36016082

RESUMO

Vaccination is the most important way to control infectious bronchitis (IB) in chickens. Since the end of 2015, the Delmarva (DMV)/1639 strain of infectious bronchitis virus (IBV) has caused significant damage to the layer flocks in Eastern Canada. The efficacy of a combination of existing IB vaccines licensed in Canada was assessed against experimental challenge with this IBV strain. The layer pullets were vaccinated during the rearing phase with live attenuated IB vaccines of Massachusetts (Mass) + Connecticut (Conn) types followed by an inactivated IB vaccine of Mass + Arkansas (Ark) types and then challenged with the Canadian IBV DMV/1639 strain at 30 weeks of age. Protection was evaluated based on the egg laying performance, immune responses, viral shedding, and viral genome loads and lesions in IBV target organs. The vaccinated challenged hens were protected from the drop in egg production observed in the non-vaccinated challenged hens. Early (5 dpi) anamnestic serum antibody response was measured in the vaccinated challenged hens as well as a significant level of antibodies was detected in the oviduct washes (14 dpi). In contrast, hens in the non-vaccinated challenged group showed delayed (12 dpi) and significantly lower serum antibody response. Viral RNA loads were reduced in the respiratory, alimentary, and reproductive tissues of the vaccinated challenged hens compared to the non-vaccinated challenged hens. Compared to the control groups, the vaccinated challenged hens had less marked microscopic lesions in the trachea, kidney, magnum, and uterus. Our experimental model demonstrated inconclusive results for cell-mediated immune responses and viral shedding. Overall, the vaccination program used in this study minimized viral replication and histopathological changes in most IBV target organs and protected challenged hens against drop in egg production.

13.
Infect Genet Evol ; 104: 105350, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35977653

RESUMO

Infectious laryngotracheitis (ILT), caused by infectious laryngotracheitis virus (ILTV), occurs sporadically in poultry flocks in Canada. Live attenuated chicken embryo origin (CEO) vaccines are being used routinely to prevent and control ILTV infections. However, ILT outbreaks still occur since vaccine strains could revert to virulence in the field. In this study, 7 Canadian ILTV isolates linked to ILT outbreaks across different time in Eastern Canada (Ontario; ON and Quebec; QC) were whole genome sequenced. Phylogenetic analysis confirmed the close relationship between the ON isolates and the CEO vaccines, whereas the QC isolates clustered with strains previously known as CEO revertant and wild-type ILTVs. Recombination network analysis of ILTV sequences revealed clear evidence of historical recombination between ILTV strains circulating in Canada and other geographical regions. The comparison of ON CEO clustered and QC CEO revertant clustered isolates with the LT Blen® CEO vaccine reference sequence showed amino acid differences in 5 and 12 open reading frames (ORFs), respectively. Similar analysis revealed amino acid differences in 32 ORFs in QC wild-type isolates. Compared to all CEO vaccine strains in the public domain, the QC wild-type isolates showed 15 unique mutational sites leading to amino acid changes in 13 ORFs. Our outcomes add to the knowledge of the molecular mechanisms behind ILTV genetic variance and provide genetic markers between wild-type and vaccine strains.


Assuntos
Infecções por Herpesviridae , Herpesvirus Galináceo 1 , Doenças das Aves Domésticas , Vacinas Virais , Aminoácidos/genética , Animais , Embrião de Galinha , Galinhas , Marcadores Genéticos , Infecções por Herpesviridae/epidemiologia , Infecções por Herpesviridae/veterinária , Herpesvirus Galináceo 1/genética , Ontário , Filogenia , Análise de Sequência de DNA , Vacinas Atenuadas/genética , Vacinas Virais/genética
14.
Microb Pathog ; 166: 105513, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35378244

RESUMO

IBV infection may lead to reduced egg production and poor egg quality in layer flocks. The DMV/1639 strain was recently identified as one of the most dominant IBV variants isolated from Canadian layer flocks with egg production problems. The current study aimed to investigate the immunopathogenesis of the Canadian DMV/1639 strain in laying chickens. Specific-pathogen-free (SPF) layers were infected at the peak of lay (29 weeks; n = 10) with an uninfected control group (n = 10). Egg production in the infected group dropped to 40% by the fifth day post-infection (dpi). Five birds from the infected and the control groups were euthanized at 5 and 10 dpi. Ovarian regression and shortened oviduct with marked histopathological changes were observed in the infected group at 10 dpi. An increase in the IBV viral load in reproductive tissues was accompanied by a significant recruitment (p < 0.05) of KUL01+ macrophages and CD4+ and CD8+ T cell subsets at 10 dpi. Additionally, anti-IBV antibody response was detected in serum and locally in the reproductive tract washes of the infected group. Overall, our findings contribute to the understanding of the pathogenicity of the Canadian DMV/1639 strain and the subsequent host responses in the reproductive tract of chickens.


Assuntos
Infecções por Coronavirus , Vírus da Bronquite Infecciosa , Doenças das Aves Domésticas , Animais , Canadá , Galinhas/virologia , Infecções por Coronavirus/veterinária , Doenças das Aves Domésticas/virologia
15.
Virology ; 566: 75-88, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34890893

RESUMO

The infectious bronchitis virus (IBV) 4/91 was one of the common IBV variants isolated in Eastern Canada between 2013 and 2017 from chicken flocks showing severe respiratory and production problems. We designed an in vivo experiment, using specific pathogen free (SPF) chickens, to study the pathogenesis of, and host response to, Canadian (CAN) 4/91 IBV infection. At one week of age, the chickens were infected with 4/91 IBV/Ck/Can/17-038913 isolate. Swab samples were collected at predetermined time points. Five birds from the infected and the control groups were euthanized at 3, 7- and 10-days post-infection (dpi) to collect lung and kidney tissues. The results indicate IBV replication in these tissues at all three time points with prominent histological lesions, significant immune cell recruitment and up regulation of proinflammatory mediators. Overall, our findings add to the understanding of the pathogenesis of 4/91 infection and the subsequent host responses in the lungs and kidneys following experimental infection.


Assuntos
Infecções por Coronavirus/imunologia , Interações Hospedeiro-Patógeno/imunologia , Vírus da Bronquite Infecciosa/patogenicidade , Rim/imunologia , Pulmão/imunologia , Doenças das Aves Domésticas/imunologia , Animais , Animais Recém-Nascidos , Proteínas Aviárias/genética , Proteínas Aviárias/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/virologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/virologia , Canadá , Movimento Celular , Galinhas , Infecções por Coronavirus/patologia , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Vírus da Bronquite Infecciosa/crescimento & desenvolvimento , Vírus da Bronquite Infecciosa/imunologia , Interferon gama/genética , Interferon gama/imunologia , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Rim/virologia , Pulmão/virologia , Macrófagos/imunologia , Macrófagos/virologia , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/imunologia , Doenças das Aves Domésticas/patologia , Doenças das Aves Domésticas/virologia , Organismos Livres de Patógenos Específicos , Carga Viral , Replicação Viral
16.
Viruses ; 13(12)2021 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-34960757

RESUMO

Infectious bronchitis virus (IBV) infection causes significant economic losses to various sectors of the poultry industry worldwide. Over the past few years, the incidence of false layer syndrome in Eastern Canadian layer flocks has been associated with the increased prevalence of the IBV Delmarva (DMV)/1639 strain. In this study, 1-day-old specific-pathogen-free (SPF) hens were infected with the Canadian DMV/1639 strain and observed until 16 weeks of age in order to determine if the IBV DMV/1639 strain is causing false layer syndrome. Early after infection, the virus showed a wide tissue distribution with characteristic gross and histopathological lesions in the respiratory tract and kidney. Around 60-70% of the infected hens demonstrated continuous cloacal viral shedding until the end of the experiment (at 16 weeks) which was associated with high IBV genome loads detected in the cecal tonsils. The experiment confirmed the field observations that the Canadian DMV/1639 strain is highly pathogenic to the female reproductive tract causing marked cystic lesions in the oviduct. Moreover, significant histopathological damage was observed in the ovary. Our study provides a detailed description of the pathological consequences of the IBV DMV/1639 strain circulating in an important poultry production sector.


Assuntos
Infecções por Coronavirus/veterinária , Vírus da Bronquite Infecciosa/fisiologia , Vírus da Bronquite Infecciosa/patogenicidade , Oviductos/virologia , Doenças das Aves Domésticas/virologia , Animais , Galinhas , Infecções por Coronavirus/patologia , Infecções por Coronavirus/fisiopatologia , Infecções por Coronavirus/virologia , Feminino , Vírus da Bronquite Infecciosa/genética , Vírus da Bronquite Infecciosa/isolamento & purificação , Oviductos/patologia , Doenças das Aves Domésticas/patologia , Doenças das Aves Domésticas/fisiopatologia , Reprodução , Organismos Livres de Patógenos Específicos , Virulência
17.
Vaccines (Basel) ; 9(5)2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34065415

RESUMO

For decades, vaccinations have been used to limit infectious bronchitis (IB) in both the broiler and layer industries. Depending on the geographical area, live attenuated vaccines are used either alone or in combination with inactivated vaccines to control infectious bronchitis virus (IBV) infections. It has been shown that administering inactivated vaccines preceded by priming with live attenuated vaccines in pullets protects laying hens against IB. However, the immunological basis of this protective response has not been adequately investigated. The objective of the study was to compare two vaccination strategies adapted by the Canadian poultry industry in terms of their ability to systemically induce an adequate immune response in IBV-impacted tissues in laying hens. The first vaccination strategy (only live attenuated IB vaccines) and second vaccination strategy (live attenuated and inactivated IB vaccines) were applied. Serum anti-IBV antibodies were measured at two time points, i.e., 3 weeks and 10 weeks post last vaccination. The recruitment of T cell subsets (i.e., CD4+ and CD8+ T cells), and the interferon (IFN)-γ mRNA expression were measured at 10 weeks post last vaccination. We observed that vaccination strategy 2 induced significantly higher serum anti-IBV antibody responses that were capable of neutralizing an IBV Mass variant associated with a flock history of shell-less egg production better than a Delmarva (DMV)1639 variant, as well as a significantly higher IFN-γ mRNA expression in the lungs, kidneys, and oviduct. We also observed that both vaccination strategies recruited CD4+ T cells as well as CD8+ T cells to the examined tissues at various extents. Our findings indicate that vaccination strategy 2 induces better systemic and local host responses in laying hens.

18.
Pathogens ; 10(5)2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-34069486

RESUMO

Infectious bronchitis virus (IBV) initially establishes the infection in the respiratory tract and then spreads to other tissues depending on its virulence. During 2011-2018, the 4/91 IBV strain was isolated from poultry flocks affected by decreased egg production and quality in Eastern Canada. One of the Canadian 4/91 IBV isolates, IBV/Ck/Can/17-038913, was propagated in embryonated chicken eggs and molecularly characterized using whole genome sequencing. An in vivo study in laying hens was conducted to observe if IBV/Ck/Can/17-038913 isolate affects the egg production and quality. Hens were infected with IBV/Ck/Can/17-038913 isolate during the peak of egg lay, using a standard dose and routes maintaining uninfected controls. Oropharyngeal and cloacal swabs were collected at predetermined time points for the quantification of IBV genome loads. At 6 and 10 days post-infection, hens were euthanized to observe the lesions in various organs and collect blood and tissue samples for the quantification of antibody response and IBV genome loads, respectively. Egg production was not impacted during the first 10 days following infection. No gross lesions were observed in the tissues of the infected birds. The IBV genome was quantified in swabs, trachea, lung, proventriculus, cecal tonsils, kidney, and reproductive tissues. The serum antibody response against IBV was quantified in infected hens. In addition, histological changes, and recruitment of immune cells, such as macrophages and T cell subsets in kidney tissues, were measured. Overall, data show that IBV/Ck/Can/17-038913 isolate is not associated with egg production issues in laying hens infected at the peak of lay, while it demonstrates various tissue tropism, including kidney, where histopathological lesions and immune cell recruitments were evident.

19.
Animals (Basel) ; 10(10)2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32993040

RESUMO

Eggs are a common source of protein and other nutrient components for people worldwide. Commercial egg-laying birds encounter several challenges during the long production cycle. An efficient egg production process requires a healthy bird with a competent reproductive system. Several viral pathogens that can impact the bird's health or induce reversible or irreversible lesions in the female reproductive organs adversely interfere with the egg industry. The negative effects exerted by viral diseases create a temporary or permanent decrease in egg production, in addition to the production of low-quality eggs. Several factors including, but not limited to, the age of the bird, and the infecting viral strain and part of reproductive system involved contribute to the form of reproductive disease encountered. Advanced methodologies have successfully elucidated some of the virus-host interactions relevant to the hen's reproductive performance, however, this branch needs further research. This review discusses the major avian viral infections that have been reported to adversely affect egg productivity and quality and aims to summarize the current understanding of the mechanisms that underlie the observed negative effects.

20.
Viruses ; 11(11)2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31766215

RESUMO

Infectious bronchitis virus (IBV) infection in chickens can lead to an economically important disease, namely, infectious bronchitis (IB). New IBV variants are continuously emerging, which complicates vaccination-based IB control. In this study, five IBVs were isolated from clinical samples submitted to a diagnostic laboratory in Ontario, Canada, and subjected to detailed molecular characterization. Analysis of the spike (S)1 gene showed that these five IBVs were highly related to the Delmarva (DMV/1639) strain (~97.0% nucleotide sequence similarity) that was firstly isolated from an IB outbreak in the Delmarva peninsula, United States of America (USA), in 2011. However, the complete genomic sequence analysis showed a 93.5-93.7% similarity with the Connecticut (Conn) vaccine strain, suggesting that Conn-like viruses contributed to the evolution of the five Canadian IBV/DMV isolates. A SimPlot analysis of the complete genomic sequence showed evidence of recombination for at least three different IBV strains, including a Conn vaccine-like strain, a 4/91 vaccine-like strain, and one strain that is yet-unidentified. The unidentified strain may have contributed the genomic regions of the S, 3, and membrane (M) genes of the five Canadian IBV/DMV isolates. The study outcomes add to the existing knowledge about involvement of recombination in IBV evolution.


Assuntos
Infecções por Coronavirus/veterinária , Variação Genética , Vírus da Bronquite Infecciosa/genética , Vírus da Bronquite Infecciosa/isolamento & purificação , Doenças das Aves Domésticas/epidemiologia , Doenças das Aves Domésticas/virologia , Recombinação Genética , Animais , Sequência de Bases , Canadá/epidemiologia , Galinhas , Genes Virais , Genoma Viral , Genômica/métodos , Genótipo , Filogenia , Vigilância em Saúde Pública , RNA Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA