Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Bio Mater ; 7(4): 2164-2174, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38493449

RESUMO

Wool keratin (WK) protein is attractive for wound dressing and biomedical applications due to its excellent biodegradability, cytocompatibility, and wound-healing properties. In this work, WK-based wound dressings were prepared by depositing WK/poly(vinyl alcohol) (PVA) and silver nanoparticle (Ag NP)-embedded WK/PVA composite nanofibrous membranes on cotton fabrics by electrospinning. Ag NPs were biosynthesized by reduction and stabilization with sodium alginate. The formed Ag NPs were characterized by ultraviolet-visible and Fourier transform infrared (FTIR) spectroscopy, and their size was determined by transmission electron microscopy and image analysis. The formed Ag NPs were spherical and had an average diameter of 9.95 nm. The produced Ag NP-embedded WK/PVA composite nanofiber-deposited cotton fabric surface was characterized by FTIR and dynamic contact angle measurements, and the nanofiber morphologies were characterized by scanning electron microscopy. The average diameter of the nanofibers formed by 0.1% Ag NP-embedded WK/PVA solution was 146.7 nm. The antibacterial activity of the surface of cotton fabrics coated with electrospun composite nanofibers was evaluated against the two most common wound-causing pathogens, Staphylococcus aureus and Pseudomonas aeruginosa. The cotton fabric coated with 0.1% Ag NP-embedded WK/PVA nanofibers showed very good antibacterial activity against both pathogens, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay results showed good cytocompatibility against L-929 mouse fibroblast cells. However, the increase in Ag NP content in the nanofibers to 0.2% negatively affected the cell viability due to the high release rate of Ag ions. The results achieved show that the developed wound dressing has good potential for wound healing applications.


Assuntos
Nanopartículas Metálicas , Nanofibras , Animais , Camundongos , Prata/farmacologia , Prata/química , Nanofibras/química , Queratinas , , Nanopartículas Metálicas/química , Antibacterianos/química , Bandagens
2.
RSC Adv ; 14(14): 9678-9690, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38525064

RESUMO

In the textile industry, textile materials are dyed and multi-functionalised by multi-step treatments that considerably increase the environmental impacts by increasing water and energy usage along with increasing the generation of volume of effluent. In this work, Ag nanoparticles (Ag NPs) were in situ formed and stabilised with gallnut, feijoa fruit skin, and mango seed kernel-derived tannins, and wool fabrics were coated simultaneously with these Ag NPs in the same bath. The Ag NP treatment produced dark to light olive-brown shades on wool fabrics. The treatment conditions for the treatment with Ag NPs were optimised to achieve the best results. The colour intensity, UV radiation absorption, antibacterial activity, surface electrical resistance, and durability of the treatment to washing were assessed by various methods. The gallnut-derived tannin (GNT)-stabilised Ag NP-coated wool fabrics showed overall the best results including excellent antibacterial activity against various types of bacteria. The treatment was durable to at least 20 cycles of IWS 7A washes (equivalent to 80 domestic washes). For the 0.5% Ag NPs on the weight of fibre (owf) dosage, the UV light transmission through the trisodium citrate-stabilised Ag NP-coated fabric at 365 and 311 nm was 6.37 and 0.95% respectively, which reduced to 1.63 and 0.20% for the fabric coated with GNT-stabilised Ag NPs providing excellent protection against UV radiation. The surface resistivity of wool fabric reduced from 1.1 × 1012 ohm cm-1 for the untreated fabric to 1.1 × 109 ohm cm-1 for the fabric coated with 2.0% owf GNT-stabilised Ag NPs. The stabilisation of Ag NPs with GNT prolonged the wash-durability by reducing the leaching of Ag NPs from the treated fabric. The developed method could be a sustainable alternative to traditional multi-stage treatments conducted in the textile industry with toxic synthetic dyes and finishing agents for the colouration and multifunctionalisation of wool fabrics.

3.
RSC Adv ; 12(46): 29767-29776, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36321110

RESUMO

Traditional grass cloth has been used in China for a long time for the manufacturing of various household furnishing textiles and ladieswear. However, traditionally the grass cloth is dyed with reactive dyes in an aqueous medium, but the dyeing process is not sustainable because of high energy and water usage and the production of coloured effluent. In this work, the possibility of palm oil/water dual-phase dyeing of traditional grass cloth with a reactive dye, C.I. Reactive Blue 194 (Reactive Blue 194), was explored. The grass cloth soaked in an alkaline solution with 80-140% pick-up was dyed in a palm oil dyebath containing dye powder dispersed in a palm oil medium. The initial study confirmed that the pre-treatment of the fabric with an alkaline solution with 140% pick-up was beneficial for the uniform distribution of the dye in the fibres. The dyeing process parameters (e.g., fixation temperature, solution pH, and fixation time) for the grass cloth dyeing with the Reactive Blue 194 were optimised by using the Taguchi method. The pH of the alkali pre-treatment solution was found to be the most influential factor, as confirmed by the analysis of variance in terms of the percentage of contribution (94.41%), which was statistically significant (P < 0.05). The confirmation tests were carried out under optimal settings, and a higher K/S (24.06) was found compared with the initial condition (21.51). X-ray diffraction analysis indicated that the dyeing process did not affect the crystallinity of the grass cloth fibres. Furthermore, the recovery of palm oil from the spent dyebath was around 99%, and up to five times recycling and reuse of palm oil were studied for the dyeing of grass cloth. The colour strength of the grass cloths dyed in the palm oil recycled up to five times was similar to the cloth dyed in fresh palm oil. The results show that palm oil can be used as a dyeing medium for the sustainable dyeing of grass cloth with effluent reduction, which can be extended to the dyeing of other textile fibres.

4.
Foods ; 11(18)2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36141031

RESUMO

Active packaging (AP) has been developed to improve the safety, quality and integrity of food, and minimise food waste, while its application in meat is scarce. This review aims to describe meat production and consumption culture in China and New Zealand to provide the context for packaging innovation requirements, focusing on the emerging opportunities for AP to be used for the improvement of the shelf-life of pre-rigor, aged, and frozen-thawed meat products. Sustainable polymers utilised in the manufacturing of AP, manufacturing techniques, the release mechanisms of actives, and legal and regulatory constraints are also discussed. Diverse market compositions and consumption cultures in China and New Zealand require different packaging solutions to extend the shelf-life of meat. AP containing antimicrobials, moisture regulating agents, and antioxidants may be used for pre-rigor, dry- and wet-aged products and in improving the quality and shelf-life of frozen-thawed meat. Further innovations using sustainably produced polymers for AP, along with incorporating active compounds of multiple functions for effectively improving meat quality and shelf-life are necessary. Challenges remain to resolve issues with scaling the technology to commercially relevant volumes as well as complying with the rigorous legal and regulatory constraints in various countries.

5.
RSC Adv ; 12(30): 19253-19264, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35865609

RESUMO

Liquid ammonia (LA) dyeing is a zero-effluent and sustainable dyeing technology investigated for textiles. In the present work, three bi-functional reactive dyes, Reactive Red 195 (R195), Reactive Yellow 145 (Y145), and Reactive Blue 194 (B194), were used to dye ramie fiber in liquid ammonia, and the dye exhaustion (%) and fixation (%) were compared with ramie fibers dyed with the same dyes in an aqueous dyeing method. Dyeing with a single reactive dye, a binary dye mixture, and a ternary dye mixture in liquid ammonia showed that all the dyes are highly compatible as they showed similar uptake. The total dye exhaustion percentage of dyeing with the ternary dye mixture was 22.6%. After dyeing, a cationic fixing agent (CFA)/decamethylcyclopentasiloxane (D5) micro-emulsion was applied and the dye fixation rate was 96.7% accompanied by high colorfastness to washing (Grade 4-5) and produced uniform shades. Finally, a color triangle of dyed ramie fibers was prepared to exhibit many colorful shades. This work demonstrates the viability of dyeing of textile fibers in liquid ammonia.

6.
Sci Rep ; 12(1): 5814, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35388115

RESUMO

In this work, Eucommia ulmoides leaf extract (EUOLstabilized silver nanoparticles (EUOL@AgNPs) incorporated sulfonated polyether sulfone (SPES)/polyethersulfone (PES) electrospun nanofiber membranes (SP ENMs) were prepared by electrospinning, and they were studied for the removal of lead (Pb(II)) and cadmium (Cd(II)) ions from aqueous solutions. The SP ENMs with various EUOL@AgNPs loadings were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscope, thermo-gravimetric analysis (TGA), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and contact angle (CA) measurements. The adsorption studies showed that the adsorption of Cd(II) and Pb(II) was rapid, achieved equilibrium within 40 min and 60 min, respectively and fitted with non-linear pseudo-second-order (PSO) kinetics model. For Cd(II) and Pb(II), the Freundlich model described the adsorption isotherm better than the Langmuir isotherm model. The maximum adsorption capacity for Cd(II) and Pb(II) was 625 and 370.37 mg g-1 respectively at neutral pH. Coexisting anions of fluoride, chloride, and nitrate had a negligible influence on Cd(II) removal than the Pb(II). On the other hand, the presence of silicate and phosphate considerably affected Cd(II) and Pb(II) adsorption. The recyclability, regeneration, and reusability of the fabricated EUOL@AgNPs-SP ENMs were studied and they retained their high adsorption capacity up to five cycles. The DFT measurements revealed that SP-5 ENMs exhibited the highest adsorption selectivity for Cd(II) and the measured binding energies for Cd(II), Pb(II), are 219.35 and 206.26 kcal mol-1, respectively. The developed ENM adsorbent may find application for the removal of heavy metals from water.


Assuntos
Nanopartículas Metálicas , Metais Pesados , Nanofibras , Poluentes Químicos da Água , Adsorção , Alcanossulfonatos , Cádmio/análise , Concentração de Íons de Hidrogênio , Cinética , Chumbo , Polímeros , Prata/análise , Sulfonas , Água , Poluentes Químicos da Água/análise
7.
Materials (Basel) ; 15(5)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35268989

RESUMO

A two-stage sequential pretreatment including caustic mercerization (CM) and liquid ammonia (LA) treatment was applied to investigate the influence on dyeing performance and handle of knit cotton fabric, and the relationship between dye size and dyeing properties. Various techniques were applied to characterize all the treated fabrics. X-ray diffraction (XRD) and Fourier-transform infrared (FTIR) analyses of the treated fabrics confirmed that both sequential treatments decreased the crystallinity of cotton fabric more than only the CM or LA treatment. The pattern of cellulose I was transferred to a mixed configuration of cellulose II and cellulose III after the CM/LA or LA/CM treatment. Thermal performances measured by thermogravimetric analysis (TGA) and differential thermogravimetry (DTG) techniques showed that the thermal stability of the treated cotton only marginally decreased. The wicking height increased after the sequential CM/LA treatment, indicating that the hydrophilicity of the fabric increased. The dye absorption and color uniformity were better for the reactive dye with a smaller molecular weight (Reactive Red 2) compared with the one with a larger molecular weight (Reactive Red 195). The total dye fixation efficiency (T%) increased to 72.93% and 73.24% for Reactive Red 2 dyeings of CM/LA- and LA/CM-cotton fabric from 46.75% of the untreated fabric, respectively; the T% increased to 65.33% and 72.27% for Reactive Red 195 dyeings of CM/LA- and LA/CM-cotton fabric from 35.17% of the untreated fabric, respectively. The colorfastness and dye exhaustion and fixation percentages of the samples were enhanced after the treatments. Furthermore, compared to the single CM or LA treatment, the softness handle properties were further improved after the fabrics were sequentially treated by CM/LA. The developed pre-treatment of CM/LA can be used in the textile industry to promote the dyeability, handle, and mechanical properties of knit cotton fabrics.

8.
Int J Biol Macromol ; 205: 55-65, 2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35149099

RESUMO

The disposal of non-degradable plastic packaging and plastic pollution are widespread environmental problems. The development of a fully biodegradable alternative foam packaging with excellent water barrier properties from polysaccharides is quite challenging. In this work, micro-fibrillated cellulose fiber-reinforced starch foams (MFC-SFs) were developed by crosslinking with two poly(siloxane)-based crosslinking agents that enhanced their strength and water barrier properties. The polysiloxane crosslinking agents studied were a cationic trimethylsiloxy-terminated poly(aminoethyl aminopropyl methyl siloxane)-co-poly(dimethylsiloxane) or PAEAPS-co-PDMS, and a non-ionic siloxy-terminated poly(dimethylsiloxane) or TMS-t-PDMS. The applied dosage of polysiloxane crosslinking agents was varied from 1.33 to 5.32% to achieve the optimum strength and moisture barrier properties. The results show that the tensile strength increased from 1.78 MPa for the control to 2.76 MPa for the MFC-SF crosslinked with 5.32% PAEAPS-co-PDMS. The corresponding tensile strength for the MFC-SF crosslinked with TMS-t-PDMS was 2.53 MPa, which is still considerably higher than the control MFC-SF. The water absorption also decreased from 326.8% for the control to 102.5% and 79.8% for the MFC-SFs crosslinked with 5.32% PAEAPS-co-PDMS and TMS-t-PDMS respectively. The crosslinking of MFC-SFs with TMS-t-PDMS provided better hydrophobicity compared to the crosslinking with PAEAPS-co-PDMS. The developed packaging could be a promising alternative to non-degradable foam packaging.


Assuntos
Celulose , Amido , Siloxanas , Resistência à Tração , Água
9.
Biology (Basel) ; 11(2)2022 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-35205117

RESUMO

The African catfish Clarias gariepinus has been introduced for aquaculture in Bangladesh due to the scarcity of indigenous C. batrachus fingerlings. However, the government of Bangladesh has banned the farming of C. gariepinus due to the carnivorous nature of this species. Recently C. gariepinus has been reported by fish farmers and consumers in Bangladesh, and unplanned hybridization between native and exotic species has been suspected. This study attempts to know the purity of C. batrachus by analyzing mitochondrial genes. Both directly sequenced and retrieved Cytochrome C Oxidase subunit I (COI) and cytochrome b (Cytb) genes from C. gareipinus and C. batrachus were analyzed by MEGA software. The morphologically dissimilar C. batrachus showed the least genetic distance (0.295) from C. gariepinus, which provided evidence of hybridization between the two species. Maximum likelihood (ML) phylogenetic trees showed that C. batrachus from Bangladesh did not cluster with C. batrachus of other countries, instead C. batrachus clustered with the exotic C. gariepinus. The suspected hybrid formed sister taxa with the exotic C. gariepinus. The study corroborates the genetic deterioration of C. batrachus by unplanned hybridization with the invasive C. gariepinus. Unplanned hybridization has deleterious consequences; therefore, immediate action is necessary for aquaculture sustainability and biodiversity conservation in Bangladesh.

10.
Materials (Basel) ; 14(19)2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34640247

RESUMO

The aerial parts of the Argy Worm Wood (AWW) plant have been used in different Chinese foods as a colorant and a taste enhancer for a long time. Despite its application as a food colorant, it has rarely been considered for the coloration of textiles. Keeping in mind the variation in color strength due to the change in phytochemical contents by seasonal change and other variables, the extraction of AWW aerial parts was optimized using the Taguchi method. Optimization was performed on the basis of total phytochemical contents (phenols, flavonoids, and tannins) in the extracted solutions. For this purpose, two different solvent systems, namely sodium hydroxide/water (NaOH/water) and ethanol/water (EtOH/water), were applied through a simple aqueous extraction method at varying levels of solvent concentration, and extraction temperature and duration. Maximum phytochemicals yield of 21.96% was obtained using NaOH/water system with 9 g/L NaOH/water at 85 °C for 20 min and 25.5% with 75% aqueous ethanol at 85 °C for 40 min. Optimized extracts were characterized by UV-Vis and FTIR spectrophotometry, which showed the presence of multiple phytochemicals in the extracts. The dyeing temperature and time were also optimized. Dyed cotton fabrics showed medium to high colorfastness to washing and excellent antibacterial and UV radiation absorption properties. The effect of pre-mordanting with salts of iron and copper was also studied on the color fastness properties. Cotton fabrics dyed with two different solvent system extracts displayed various shades of brown with NaOH/water, and green with aqueous ethanol with and without pre-mordanting. The present study provides the textile industry with a promising source of functional bio-colorant and a value-adding approach for the AWW plant industry.

11.
RSC Adv ; 11(3): 1482-1492, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-35424106

RESUMO

The synthetic dyes, antimicrobial and insect-resistant agents, UV radiation absorbents, and antistatic agents that are used to introduce multifunctional properties to textiles are not only toxic to the environment but also require multi-step treatments to achieve them. Toxic antimicrobials are responsible for the growth of drug-resistant bacteria. Nature-derived polyphenols, such as tannin, could be a viable green alternative. In this work, wool fabrics were treated with a commercial tannic acid (PP-1), and also with gallotannin-rich polyphenols extracted from feijoa fruit peel (PP-2) and mango seed kernel (PP-3) to introduce multifunctional properties, i.e. to make the fabric antistatic, insect-resistant, hydrophilic, and able to absorb harmful UV radiation. The effect of the treatment on the colour, colour intensity, surface resistivity, UV radiation absorption, antibacterial activity, and insect-repellence was systematically evaluated. It was found that PP-3-treated fabric exhibited excellent surface hydrophilicity, antibacterial activity against Staphylococcus aureus, Klebsiella pneumoniae, and Pseudomonas aeruginosa, and insect-resistant activity against the larvae of Tineola bisselliella. PP-3 treatment also provided comparable UV protection and antioxidant activity but was marginally inferior to the UV protection and antioxidant activity exhibited by the PP-1-treated fabric. The commercial tannic acid treated fabric provided the best antistatic properties but the lowest surface hydrophilicity. The developed treatment could provide a green and sustainable alternative to hazardous UV absorbing, antibacterial and insect-resistant agents used in the textile industry.

12.
RSC Adv ; 10(30): 17515-17523, 2020 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35515614

RESUMO

Wool fibre is a popular fibre for the manufacture of apparel and floor coverings, but it does not have adequate thermal stability, antistatic, UV resistance, and antibacterial properties that are required for some applications, such as outerwear and hospital gowns. In this work, a wool fabric was treated with para-aminobenzenesulphonic acid (ABSA) by the oxidative polymerisation method and its effect on the thermal stability, UV radiation resistance, electrical conductivity and antibacterial properties of the treated fabric was systematically evaluated. It was found that the ABSA treatment had synergistic effects on the various functional properties of the treated fabric. The ABSA treatment not only made the fabric antibacterial but also enhanced its UV radiation absorption capability, surface hydrophobicity, electro-conductivity, tensile strength, and thermal stability. The maximum degradation temperature of the wool fibre increased from 339.5 °C to 349.6 °C and the UV-B transmission through the fabric at 290 nm reduced to 1.5%. The surface hydrophobicity of the treated fabric samples also improved as the surface contact angle of the fabric increased from 119.5° for the untreated to 131.7° for the fabric treated with 4% ABSA. The surface electrical resistance decreased from 1200 × 109 to 484 × 109 Ohm cm-1, and the treated fabric also showed excellent antibacterial activity against Staphylococcus aureus and Klebsiella pneumoniae. The developed treatment could be used in the textile industry as an energy-efficient process for the multi-functionalisation of wool and other polyamide fibres.

13.
Int J Biol Macromol ; 118(Pt B): 1685-1695, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30017985

RESUMO

Chitosan shows selective antimicrobial activity as a bioactive polymer. In this work, a quaternary ammonium derivative of chitosan was synthesized by graft-copolymerization of chitosan with poly[2-(acryloyloxy)ethyltrimethylammonium chloride] or pATC by the redox polymerization method to enhance chitosan's antimicrobial activity. The structural characterizations of the quaternized chitosan were confirmed by Fourier transform infrared spectroscopy, and also by 1H and 13C nuclear magnetic resonance spectroscopy. The produced chitosan was converted into films by solution casting. The physicomechanical properties of the modified chitosan were compared with the unmodified chitosan. Thermal stability of the films was characterized by thermogravimetric analysis. The pATC grafted chitosan films showed lower thermal stability, water absorption, swelling ratio, and tensile strength compared to the unmodified chitosan film. Antimicrobial activity of the quaternized chitosan was tested against three kinds of bacteria (Staphylococcus aureus, Klebsiella pneumoniae, and Pseudomonas aeruginosa) and two fungi (Aspergillus brasiliensis and Aspergillus fumigatus). The unmodified chitosan showed good antibacterial activity but no resistance against any fungus. However, the pATC grafted chitosan showed enhanced antibacterial activity against all bacteria investigated. The fungicidal test shows that the pATC-grafted-chitosan showed higher activity against the tested fungi (Aspergillus fumigatus and Aspergillus brasiliensis) compared to the unmodified chitosan, especially against Aspergillus fumigatus.


Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Quitosana/química , Polímeros/química , Compostos de Amônio Quaternário/química , Compostos de Amônio Quaternário/farmacologia , Bactérias/efeitos dos fármacos , Fungos/efeitos dos fármacos , Fenômenos Mecânicos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Fenômenos Físicos , Polimerização , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria , Água
14.
ACS Omega ; 3(12): 17656-17667, 2018 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-31458365

RESUMO

The Bunte salt-terminated polyether (BSTP)-based treatment has been developed for the chlorine-free shrink-resist treatment of wool fibers and fabrics. However, the effect of BSTP treatment on the physicomechanical and chemical properties of wool fabrics has not been thoroughly investigated. In this work, wool fabrics were treated with a commercially available BSTP at various concentrations by the pad-dry-cure process. The effect of BSTP coatings on the dyeability, shrink resistance, mechanical properties, wettability, hydrophilicity, and yellowness of the treated wool fabrics was systematically evaluated. It was found that the shrinkage of the treated wool fabrics considerably decreased with an increase in the BSTP concentration. On the other hand, the tensile strength, elongation at break, and surface hydrophilicity highly increased with an increase in the BSTP concentration. The tensile strength of the treated fabric was better than the tensile strength shown by the blank-treated fabric even at the lowest investigated concentration of BSTP (60 g/L). The bending rigidity as well as the bending modulus of wool fabric also decreased with an increase in the applied concentration of BSTP. The treatment showed very little effect on the yellowness and whiteness indices of wool fabric. The stain resistance against C.I. Acid Red 40 of the treated wool fabrics increased with an increase in the applied concentrations of BSTP. However, against red wine, the stain resistance decreased at lower concentrations of BSTP but showed a little effect for the higher concentrations. The coating of wool fabrics with the BSTP not only reduced the shrinkage of the fabrics but also increased their hydrophilicity and also the stain resistance against acid dye-based stain but also negatively affected their dyeability and stain resistance against red wine, especially at lower BSTP concentrations.

15.
Ultrason Sonochem ; 40(Pt A): 488-496, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28946450

RESUMO

Ultrasonic dyeing has been investigated as a means to increase the diffusion of the dye molecules into the fiber for the dyeing of various fibers. However, for scouring, bleaching, and dyeing of jute fabrics, the beneficial effect of sonication was never realized. In this work, we report the effect of sonicated scouring and bleaching of jute fabrics on their physicomechanical properties and the dyeability in the conventional dyeing with reactive and basic dyes. The sonicated scoured and bleached fabric showed higher whiteness index and weight loss but the tensile strength and yellowness index decreased compared to the conventionally scoured and bleached jute fabric. The sonicated scoured fabric showed partial removal of lignin but the conventionally scoured fabric did not show any change in lignin content. It was found that in the case of conventional dyeing, the sonicated scoured and bleached fabric produced higher color strength than the jute fabric scoured and bleached at the same conditions but without sonication. Moreover, we also investigated the effect of ultrasound on the dyeing and color fastness properties of jute fabric dyed with two reactive and two basic dyes. It was found that the sonicated dyeing produced higher color strength compared to the fabrics dyed without sonication. Both conventional and sonicated dyed fabric showed very similar color fastness properties to light, washing, and rubbing indicating no degradation of dyes occurred during sonicated dyeing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA