Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cells ; 13(3)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38334632

RESUMO

Melanoma frequently harbors genetic alterations in key molecules leading to the aberrant activation of PI3K and its downstream pathways. Although the role of PI3K/AKT/mTOR in melanoma progression and drug resistance is well documented, targeting the PI3K/AKT/mTOR pathway showed less efficiency in clinical trials than might have been expected, since the suppression of the PI3K/mTOR signaling pathway-induced feedback loops is mostly associated with the activation of compensatory pathways such as MAPK/MEK/ERK. Consequently, the development of intrinsic and acquired resistance can occur. As a solid tumor, melanoma is notorious for its heterogeneity. This can be expressed in the form of genetically divergent subpopulations including a small fraction of cancer stem-like cells (CSCs) and non-cancer stem cells (non-CSCs) that make the most of the tumor mass. Like other CSCs, melanoma stem-like cells (MSCs) are characterized by their unique cell surface proteins/stemness markers and aberrant signaling pathways. In addition to its function as a robust marker for stemness properties, CD133 is crucial for the maintenance of stemness properties and drug resistance. Herein, the role of CD133-dependent activation of PI3K/mTOR in the regulation of melanoma progression, drug resistance, and recurrence is reviewed.


Assuntos
Melanoma , Sirolimo , Humanos , Sirolimo/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Melanoma/patologia , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Resistencia a Medicamentos Antineoplásicos
2.
Cancers (Basel) ; 16(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38275910

RESUMO

Melanoma is the third most common type of skin cancer, characterized by its heterogeneity and propensity to metastasize to distant organs. Melanoma is a heterogeneous tumor, composed of genetically divergent subpopulations, including a small fraction of melanoma-initiating cancer stem-like cells (CSCs) and many non-cancer stem cells (non-CSCs). CSCs are characterized by their unique surface proteins associated with aberrant signaling pathways with a causal or consequential relationship with tumor progression, drug resistance, and recurrence. Melanomas also harbor significant alterations in functional genes (BRAF, CDKN2A, NRAS, TP53, and NF1). Of these, the most common are the BRAF and NRAS oncogenes, with 50% of melanomas demonstrating the BRAF mutation (BRAFV600E). While the successful targeting of BRAFV600E does improve overall survival, the long-term efficacy of available therapeutic options is limited due to adverse side effects and reduced clinical efficacy. Additionally, drug resistance develops rapidly via mechanisms involving fast feedback re-activation of MAPK signaling pathways. This article updates information relevant to the mechanisms of melanoma progression and resistance and particularly the mechanistic role of CSCs in melanoma progression, drug resistance, and recurrence.

3.
Cancers (Basel) ; 15(12)2023 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-37370757

RESUMO

The role of the tumor microenvironment in tumor growth and therapy has recently attracted more attention in research and drug development. The ability of the microenvironment to trigger tumor maintenance, progression, and resistance is the main cause for treatment failure and tumor relapse. Accumulated evidence indicates that the maintenance and progression of tumor cells is determined by components of the microenvironment, which include stromal cells (endothelial cells, fibroblasts, mesenchymal stem cells, and immune cells), extracellular matrix (ECM), and soluble molecules (chemokines, cytokines, growth factors, and extracellular vesicles). As a solid tumor, melanoma is not only a tumor mass of monolithic tumor cells, but it also contains supporting stroma, ECM, and soluble molecules. Melanoma cells are continuously in interaction with the components of the microenvironment. In the present review, we focus on the role of the tumor microenvironment components in the modulation of tumor progression and treatment resistance as well as the impact of the tumor microenvironment as a therapeutic target in melanoma.

4.
Int J Mol Sci ; 24(6)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36982421

RESUMO

The antimicrobial protein S100A15 belongs to the S100 family, which is differentially expressed in a variety of normal and pathological tissues. Although the function of S100A15 protein has been discussed in several studies, its induction and regulation in oral mucosa, so far, are largely unknown. In this study, we demonstrate that S100A15 is induced by the stimulation of oral mucosa with gram- or gram+ bacterial pathogens, as well as with the purified membrane components, namely lipopolysaccharides (LPS) and lipoteichoic acid (LTA). The stimulation of the human gingival fibroblast (GF) and the human mouth epidermal carcinoma (KB) cell lines with either gram- or gram+ bacterial pathogens or their purified membrane components (LPS and LTA) results in the activation of NF-κB, apoptosis-regulating kinase1 (ASK1), and MAP kinase signaling pathways including, c-Jun N-terminal kinase (JNK) and p38 together with their physiological substrates AP-1 and ATF-2, respectively. Inhibition of S100A15 by antibodies-mediated Toll-like receptor 4 (TLR4) or Toll-like receptor 2 (TLR2) neutralization reveals the induction of S100A15 protein by LPS/gram- bacterial pathogens to be TLR4- dependent mechanism, whereas induction by LTA/gram+ bacterial pathogens to be TLR2- dependent mechanism. Pre-treatment of GF and KB cells with JNK (SP600125), p38 (SB-203580), or NF-κB (Bay11-7082) specific inhibitors further demonstrates the importance of JNK, p38 and NF-κB pathways in the regulation of gram-/gram+ bacterial pathogen-induced S100A15 expression. Our data provide evidence that S100A15 is induced in cancer and non-cancer oral mucosa-derived cell lines by gram-/gram+ bacterial pathogens and provide insight into the molecular mechanisms by which gram- and gram+ bacterial pathogens induce S100A15 expression in the oral mucosa.


Assuntos
Anti-Infecciosos , NF-kappa B , Humanos , Anti-Infecciosos/farmacologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , NF-kappa B/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Transdução de Sinais , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like , Receptores Toll-Like
5.
Oncogene ; 39(32): 5468-5478, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32616888

RESUMO

Melanoma stem cells (MSCs) are characterized by their unique cell surface proteins and aberrant signaling pathways. These stemness properties are either in a causal or consequential relationship to melanoma progression, treatment resistance and recurrence. The functional analysis of CD133+ and CD133- cells in vitro and in vivo revealed that melanoma progression and treatment resistance are the consequences of CD133 signal to PI3K pathway. CD133 signal to PI3K pathway drives two downstream pathways, the PI3K/Akt/MDM2 and the PI3K/Akt/MKP-1 pathways. Activation of PI3K/Akt/MDM2 pathway results in the destabilization of p53 protein, while the activation of PI3K/Akt/MKP-1 pathway results in the inhibition of mitogen-activated protein kinases (MAPKs) JNK and p38. Activation of both pathways leads to the inhibition of fotemustine-induced apoptosis. Thus, the disruption of CD133 signal to PI3K pathway is essential to overcome Melanoma resistance to fotemustine. The pre-clinical verification of in vitro data using xenograft mouse model of MSCs confirmed the clinical relevance of CD133 signal as a therapeutic target for melanoma treatment. In conclusion, our study provides an insight into the mechanisms regulating MSCs growth and chemo-resistance and suggested a clinically relevant approach for melanoma treatment.


Assuntos
Antígeno AC133/metabolismo , Melanoma/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Células-Tronco/metabolismo , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Fosfatase 1 de Especificidade Dupla/metabolismo , Humanos , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Compostos de Nitrosoureia/farmacologia , Compostos Organofosforados/farmacologia , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Transdução de Sinais , Células-Tronco/efeitos dos fármacos , Células-Tronco/patologia
6.
World J Gastroenterol ; 23(5): 743-750, 2017 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-28223719

RESUMO

In addition to its contributing role in the development of chronic liver diseases, chronic hepatitis C virus (HCV) infection is associated with extrahepatic manifestations, particularly, cutaneous-based disorders including those with pruritus as a symptom. Pruritus is frequently associated with the development of chronic liver diseases such as cholestasis and chronic viral infection, and the accumulation of bile acids in patients' sera and tissues as a consequence of liver damage is considered the main cause of pruritus. In addition to their role in dietary lipid absorption, bile acids can trigger the activation of specific receptors, such as the G protein-coupled bile acid receptor (GPBA/ TGR5). These types of receptors are known to play a crucial role in the modulation of the systemic actions of bile acids. TGR5 expression in primary sensory neurons triggers the activation of the transient receptor potential vanilloid 1 (TRPV1) leading to the induction of pruritus by an unknown mechanism. Although the pathologic phenomenon of pruritus is common, there is no uniformly effective therapy available. Understanding the mechanisms regulating the occurrence of pruritus together with the conduction of large-scale clinical and evidence-based studies, may help to create a standard treatment protocol. This review focuses on the etiopathogenesis and treatment strategies of pruritus associated with chronic HCV infection.


Assuntos
Hepatite C Crônica/complicações , Prurido/etiologia , Colestase/etiologia , Colestase/fisiopatologia , Citocinas/metabolismo , Hepatite C Crônica/fisiopatologia , Hepatite C Crônica/terapia , Humanos , Lisofosfolipídeos/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Prurido/fisiopatologia , Prurido/terapia
7.
Histol Histopathol ; 31(12): 1291-301, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27301538

RESUMO

Human malignant melanoma is a highly aggressive skin tumor that is characterized by its extraordinary heterogeneity, propensity for dissemination to distant organs and resistance to cytotoxic agents. Although chemo- and immune-based therapies have been evaluated in clinical trials, most of these therapeutics do not show significant benefit for patients with advanced disease. Treatment failure in melanoma patients is attributed mainly to the development of tumor heterogeneity resulting from the formation of genetically divergent subpopulations. These subpopulations are composed of cancer stem-like cells (CSCs) as a small fraction and non-cancer stem cells that form the majority of the tumor mass. In recent years, CSCs gained more attention and suggested as valuable experimental model system for tumor study. In melanoma, intratumoral heterogeneity, progression and drug resistance result from the unique characteristics of melanoma stem cells (MSCs). These MSCs are characterized by their distinct protein signature and tumor growth-driving pathways, whose activation is mediated by driver mutation-dependent signal. The molecular features of MSCs are either in a causal or consequential relationship to melanoma progression, drug resistance and relapse. Here, we review the current scientific evidence that supports CSC hypothesis and the validity of MSCs-dependent pathways and their key molecules as potential therapeutic target for melanoma treatment.


Assuntos
Melanoma/patologia , Células-Tronco Neoplásicas/patologia , Humanos , Neoplasias Cutâneas , Melanoma Maligno Cutâneo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA