Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 919: 170692, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38325491

RESUMO

This study aimed to assess the potential impact of long-term chronic exposure (69 years) to naturally-occurring radionuclides (RNs) and heavy metals on microbial communities in sediment from a stream flowing through a watershed impacted by an ancient mining site (Rophin, France). Four sediment samples were collected along a radioactivity gradient (for 238U368 to 1710 Bq.Kg-1) characterized for the presence of the bioavailable fractions of radionuclides (226Ra, 210Po), and trace metal elements (Th, U, As, Pb, Cu, Zn, Fe). Results revealed that the available fraction of contaminants was significant although it varied considerably from one element to another (0 % for As and Th, 5-59 % for U). Nonetheless, microbial communities appeared significantly affected by such chronic exposure to (radio)toxicities. Several microbial functions carried by bacteria and related with carbon and nitrogen cycling have been impaired. The high values of fungal diversity and richness observed with increasing downstream contamination (H' = 4.4 and Chao1 = 863) suggest that the community had likely shifted toward a more adapted/tolerant one as evidenced, for example, by the presence of the species Thelephora sp. and Tomentella sp. The bacterial composition was also affected by the contaminants with enrichment in Myxococcales, Acidovorax or Nostocales at the most contaminated points. Changes in microbial composition and functional structure were directly related to radionuclide and heavy metal contaminations, but also to organic matter which also significantly affected, directly or indirectly, bacterial and fungal compositions. Although it was not possible to distinguish the specific effects of RNs from heavy metals on microbial communities, it is essential to continue studies considering the available fraction of elements, which is the only one able to interact with microorganisms.


Assuntos
Metais Pesados , Microbiota , Metais Pesados/toxicidade , Metais Pesados/análise , Bactérias , Radioisótopos/análise , França
2.
Environ Sci Technol ; 54(19): 12226-12234, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32924461

RESUMO

In a waste management context, predicting the mobility of contaminants is essential. A key issue entails assessing the applicability of current knowledge on adsorption processes to natural systems. Such is the focus herein for nickel in interaction with Callovo-Oxfordian (COx) clay rock, a formation selected in France for possible radioactive waste disposal. The challenge is to link predictive modeling results with the experimental data characterizing the behavior of the labile and naturally occurring Ni fraction by implementing a new simple method. Retention studies on compact systems serve to complete this work. Combined electron microprobe and laser ablation high-resolution inductively coupled plasma mass spectrometry data show that natural Ni (∼39 mg kg-1) is homogeneously distributed within the clay matrix, which corresponds to the main reservoir (∼70%). Data interpretation of desorption tests yields an in situ Kd value of ∼80 L kg-1 and a labile Ni amount of ∼5 mg kg-1, that is, ∼13% of the Ni inventory. Predictive modeling explains the sorption data in considering that only weak clay fraction sites take part in the adsorption. The role of the clay matrix in Ni retention is confirmed by analyzing the Ni-spiked compact COx samples, whereby an increase of the Ni content in the clay fraction is observed following the retention experiment.


Assuntos
Níquel , Resíduos Radioativos , Adsorção , Silicatos de Alumínio , Argila , França , Resíduos Radioativos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA