Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Curr Top Behav Neurosci ; 43: 271-321, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30357573

RESUMO

Anxiety disorders and trauma- and stressor-related disorders, such as posttraumatic stress disorder (PTSD), are common and are associated with significant economic and social burdens. Although trauma and stressor exposure are recognized as a risk factors for development of anxiety disorders and trauma or stressor exposure is recognized as essential for diagnosis of PTSD, the mechanisms through which trauma and stressor exposure lead to these disorders are not well characterized. An improved understanding of the mechanisms through which trauma or stressor exposure leads to development and persistence of anxiety disorders or PTSD may result in novel therapeutic approaches for the treatment of these disorders. Here, we review the current state-of-the-art theories, with respect to mechanisms through which stressor exposure leads to acute or chronic exaggeration of avoidance or anxiety-like defensive behavioral responses and fear, endophenotypes in both anxiety disorders and trauma- and stressor-related psychiatric disorders. In this chapter, we will explore physiological responses and neural circuits involved in the development of acute and chronic exaggeration of anxiety-like defensive behavioral responses and fear states, focusing on the role of the hypothalamic-pituitary-adrenal (HPA) axis and glucocorticoid hormones.


Assuntos
Ansiedade , Medo , Transtornos de Ansiedade , Corticosterona , Glucocorticoides , Humanos , Sistema Hipotálamo-Hipofisário , Sistema Hipófise-Suprarrenal , Estresse Psicológico
2.
Neuropharmacology ; 148: 257-271, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30579884

RESUMO

Caffeine is the most commonly used drug in the world. However, animal studies suggest that chronic consumption of caffeine during adolescence can result in enhanced anxiety-like behavioral responses during adulthood. One mechanism through which chronic caffeine administration may influence subsequent anxiety-like responses is through actions on brainstem serotonergic systems. In order to explore potential effects of chronic caffeine consumption on brainstem serotonergic systems, we evaluated the effects of a 28-day exposure to chronic caffeine (0.3 g/L; postnatal day 28-56) or vehicle administration in the drinking water, followed by 24 h caffeine withdrawal, and subsequent challenge with caffeine (30 mg/kg; s.c.) or vehicle in adolescent male rats. In Experiment 1, acute caffeine challenge induced a widespread activation of serotonergic neurons throughout the dorsal raphe nucleus (DR); this effect was attenuated in rats that had been exposed to chronic caffeine consumption. In Experiment 2, acute caffeine administration profoundly decreased tph2 and slc22a3 mRNA expression throughout the DR, with no effects on htr1a or slc6a4 mRNA expression. Chronic caffeine exposure for four weeks during adolescence was sufficient to decrease tph2 mRNA expression in the DR measured 28 h after caffeine withdrawal. Chronic caffeine administration during adolescence did not impact the ability of acute caffeine to decrease tph2 or slc22a3 mRNA expression. Together, these data suggest that both chronic caffeine administration during adolescence and acute caffeine challenge during adulthood are important determinants of serotonergic function and serotonergic gene expression, effects that may contribute to chronic effects of caffeine on anxiety-like responses.


Assuntos
Cafeína/farmacologia , Núcleo Dorsal da Rafe/efeitos dos fármacos , Neurônios Serotoninérgicos/efeitos dos fármacos , Fatores Etários , Animais , Núcleo Dorsal da Rafe/metabolismo , Regulação para Baixo/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Masculino , Proteínas de Transporte de Cátions Orgânicos/biossíntese , Ratos , Receptor 5-HT1A de Serotonina/biossíntese , Proteínas da Membrana Plasmática de Transporte de Serotonina/biossíntese , Triptofano Hidroxilase/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA