RESUMO
RATIONALE: While neurosteroids are well-described positive allosteric modulators of gamma-aminobutyric acid type A (GABAA) receptors, the binding sites that mediate these actions have not been definitively identified. OBJECTIVES: This study was conducted to synthesize neurosteroid analogue photolabeling reagents that closely mimic the biological effects of endogenous neurosteroids and have photochemical properties that will facilitate their use as tools for identifying the binding sites for neurosteroids on GABAA receptors. RESULTS: Two neurosteroid analogues containing a trifluromethyl-phenyldiazirine group linked to the steroid C11 position were synthesized. These reagents, CW12 and CW14, are analogues of allopregnanolone (5α-reduced steroid) and pregnanolone (5ß-reduced steroid), respectively. Both reagents were shown to have favorable photochemical properties with efficient insertion into the C-H bonds of cyclohexane. They also effectively replicated the actions of allopregnanolone and pregnanolone on GABAA receptor functions: they potentiated GABA-induced currents in Xenopus laevis oocytes transfected with α1ß2γ2L subunits, modulated [(35)S]t-butylbicyclophosphorothionate binding in rat brain membranes, and were effective anesthetics in Xenopus tadpoles. Studies using [(3)H]CW12 and [(3)H]CW14 showed that these reagents covalently label GABAA receptors in both rat brain membranes and in a transformed human embryonal kidney (TSA) cells expressing either α1 and ß2 subunits or ß3 subunits of the GABAA receptor. Photolabeling of rat brain GABAA receptors was shown to be both concentration-dependent and stereospecific. CONCLUSIONS: CW12 and CW14 have the appropriate photochemical and pharmacological properties for use as photolabeling reagents to identify specific neurosteroid-binding sites on GABAA receptors.
Assuntos
Anestésicos Gerais/química , Anestésicos Gerais/farmacologia , GABAérgicos/química , GABAérgicos/farmacologia , Neurotransmissores/química , Neurotransmissores/farmacologia , Pregnanolona/análogos & derivados , Receptores de GABA-A/efeitos dos fármacos , Animais , Linhagem Celular/efeitos dos fármacos , Humanos , Indicadores e Reagentes , Larva , Oócitos/metabolismo , Pregnanolona/química , Pregnanolona/farmacologia , Ratos , Reflexo/efeitos dos fármacos , Xenopus laevisRESUMO
Previous studies have shown that the neurosteroid analogue, 6-Azi-pregnanolone (6-AziP), photolabels voltage-dependent anion channels and proteins of approximately 55 kDa in rat brain membranes. The present study used two-dimensional electrophoresis and nanoelectrospray ionization ion-trap mass spectrometry (nano-ESI-MS) to identify the 55 kDa proteins (isoelectric point 4.8) as isoforms of ß-tubulin. This identification was confirmed by immunoblot and immunoprecipitation of photolabeled protein with anti-ß-tubulin antibody and by the demonstration that 6-AziP photolabels purified bovine brain tubulin in a concentration-dependent pattern. To identify the photolabeling sites, purified bovine brain tubulin was photolabeled with 6-AziP, digested with trypsin, and analyzed by matrix-assisted laser desorption/ionization MS (MALDI). A 6-AziP adduct of TAVCDIPPR(m/z = 1287.77), a ß-tubulin specific peptide, was detected by MALDI. High-resolution liquid chromatography-MS/MS analysis identified that 6-AziP was covalently bound to cysteine 354 (Cys-354), previously identified as a colchicine-binding site. 6-AziP photolabeling was inhibited by 2-methoxyestradiol, an endogenous derivative of estradiol thought to bind to the colchicine site. Structural modeling predicted that neurosteroids could dock in this colchicine site at the interface between α- and ß-tubulin with the photolabeling group of 6-AziP positioned proximate to Cys-354.