Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 16363, 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37773531

RESUMO

Formation and the basic features of arbitrary amplitude ion-acoustic solitary waves (IASWs) in a plasma consisting of warm positive ions, two [Formula: see text]-distributed electrons and an electron beam are investigated by using the Sagdeev pseudopotential approach. It is shown that the soliton existence domain (Mach number limits) sensitively depends on temperature of ions, spectral index of cool electrons and concentration of hot electron species while spectral index of hot electrons, hot-to-cool electron temperature ratio and also concentration of electron beam do not considerably affect this domain. It is also found that temperature of electron beam only affect the existence domain of rarefactive solitons. Furthermore, it is shown that considered plasma medium supports the coexistence of positive and negative IASWs. Moreover, effect of different plasma parameters such as hot-to-cool electron density ratio, ion-to-cool electron temperature ratio, beam-to-ion density ratio, hot-to-cool electron temperature ratio and superthermality index of electron species on the basic features of positive and negative IASWs is investigated numerically. Finally, the effect of plasma parameters on the parametric regime of coexistence of compressive and rarefactive IASWs is studied and, for example, effect of temperature of positive ions and number density of hot electrons on polarity of IASWs is numerically investigated.

2.
Sci Rep ; 12(1): 6905, 2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35484270

RESUMO

The plasma sheath of a three ion species plasma is studied numerically, relying on the results of the experiment by Yip et al. (Phys. Plasmas 23:050703 (2016) to measure the positive ion velocities at the sheath edge. The positive ion species ([Formula: see text], [Formula: see text] and [Formula: see text]) are assumed to be singly charged and to be characterized by the same temperature. It is shown that the sheath characteristics, viz. the particle number densities, the electrostatic potential and the space charge density profile in the sheath all depend on the [Formula: see text] concentration that is gradually added to the argon-xenon plasma as the third positive ion species. Also, the effect of ion-neutral collisions on the sheath properties is investigated numerically. Our results may be extended to a multi-ion plasma with more than two species of positive ions.

3.
Sci Rep ; 12(1): 4654, 2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35301369

RESUMO

Sheath formation criterion of an electropositive plasma consisting of singly charged positive ions, two kappa-distributed electron species with different effective temperatures and a monoenergetic electron beam is investigated by the Sagdeev potential approach. Using this criterion, effects of electron beam, superthermality of electron species as well as temperature and concentration of positive ions on the sheath properties are studied numerically. It is shown that the temperature of positive ions, concentration and superthermality of electron species and presence of electron beam affect Bohm velocity of positive ions. Also, it is observed that density distribution of the charged particles and sheath thickness increase in the presence of electron beam. In addition, it is found that with increasing the ion temperature, the sheath width and density distribution of the charged particles in the sheath area decrease.

4.
Sci Rep ; 11(1): 9531, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33953308

RESUMO

Multi-component active plasmas are modeled in the presence of a constant oblique magnetic field by using the hydrodynamics equations. Assuming the electrons and negative ions have Boltzmann distribution and the positive ions have finite temperature, the sheath formation criterion is derived by analyzing the Sagdeev potential. It is found that the Bohm velocity of positive ions depends sensitively on the plasma parameters such as ion-neutral collision frequency, electron impact ionization frequency, positive and negative ion temperatures, initial densities of the charged particles and direction of the applied magnetic field. Also, using our obtained Bohm criterion, the sheath properties of an active magnetized plasma consisting of electrons and positive and negative ion species are investigated numerically and the results are compared with the results of a similar quiescent plasma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA