Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Ther Oncolytics ; 20: 220-227, 2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33665360

RESUMO

Prognosis for advanced oral carcinoma remains poor. Oncolytic virotherapy uses replication-competent viruses to infect and kill only the tumor cells. However, it has been difficult to investigate the oncolytic activity of viruses against oral carcinomas in mouse models. This study established a mouse model of oral cancer and investigated the in vitro and in vivo anti-tumor effects of HF10, a highly attenuated, replication-competent herpes simplex virus (HSV)-1. Mouse tongue cancer was induced by injecting 4-nitroquinoline 1-oxide into the mouse tongue. The murine oral cancer cell line isolated from this tumor, named NMOC1, formed invasive carcinoma within a week when injected into mouse tongue. HF10 successfully infected, replicated, and spread in the cancer cells in vitro. HF10 was able to kill cancer cells isolated from human or mouse tongue tumor. HF10 injection into tongue carcinomas prolonged mouse survival without any side effects or weight loss. Intertumoral injection of GFP-expressing HF10 confirmed that viral spread was confined within the tumors. Immunohistochemical staining showed that HF10 induced infiltration of CD8-positive T cells around HSV-infected cells in the tumor mass, implying increased anti-tumor immunity. We successfully established an oral cancer cell line and showed that HF10 is a promising therapeutic agent for oral cancer.

2.
Cancer Gene Ther ; 27(7-8): 585-598, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31477804

RESUMO

Recent developments in therapeutic strategies have improved the prognosis of head and neck squamous cell carcinoma (HNSCC). Nevertheless, 5-year survival rate remains only 40%, necessitating new therapeutic agents. Oncolytic virotherapy entails use of replication-competent viruses to selectively kill cancer cells. We aimed to explore the potential of HF10 as an oncolytic virus against human or mouse HNSCC cell lines, and primary-cultured HNSCC cells. HF10 replicated well in all the HNSCC cells, in which it induced cytopathic effects and cell killing. Next, we investigated the oncolytic effects of HF10 in ear tumor models with human or mouse tumor cells. We detected HF10-infected cells within the ear tumors based on their expression of green fluorescent protein. HF10 injection suppressed ear tumor growth and prolonged overall survival. In the syngeneic model, HF10 infection induced tumor necrosis with infiltration of CD8-positive cells. Moreover, the splenocytes of HF10-treated mice released antitumor cytokines, IL-2, IL-12, IFN-alpha, IFN-beta, IFN-gamma, and TNF-alpha, after stimulation with tumor cells in vitro. The HF10-treated mice that survived their original tumor burdens rejected tumor cells upon re-challenge. These results suggested that HF10 killed HNSCC cells and induced antitumoral immunity, thereby establishing it as a promising agent for the treatment of HNSCC patients.


Assuntos
Terapia Viral Oncolítica , Simplexvirus , Carcinoma de Células Escamosas de Cabeça e Pescoço/terapia , Animais , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA