Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Microorg Control ; 29(2): 91-97, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38880621

RESUMO

Campylobacter jejuni causes gastroenteritis in humans and is a major concern in food safety. Commercially prepared chicken meats are frequently contaminated with C. jejuni, which is closely associated with the diffusion of intestinal contents in poultry processing plants. Sodium hypochlorite (NaClO) is commonly used during chicken processing to prevent food poisoning; however, its antimicrobial activity is not effective in the organic-rich solutions. In this study, we investigated the potential of a new photo-disinfection system, UVA-LED, for the disinfection of C. jejuni-contaminated chicken surfaces. The data indicated that UVA irradiation significantly killed C. jejuni and that its killing ability was significantly facilitated in NaClO-treated chickens. Effective inactivation of C. jejuni was achieved using a combination of UVA and NaClO, even in the organic-rich condition. The results of this study show that synergistic disinfection using a combination of UVA and NaClO has potential beneficial effects in chicken processing systems.


Assuntos
Campylobacter jejuni , Galinhas , Desinfecção , Carne , Hipoclorito de Sódio , Raios Ultravioleta , Campylobacter jejuni/efeitos dos fármacos , Campylobacter jejuni/efeitos da radiação , Animais , Hipoclorito de Sódio/farmacologia , Raios Ultravioleta/efeitos adversos , Desinfecção/métodos , Carne/microbiologia , Desinfetantes/farmacologia , Viabilidade Microbiana/efeitos dos fármacos , Viabilidade Microbiana/efeitos da radiação , Microbiologia de Alimentos , Contaminação de Alimentos/prevenção & controle
2.
J Nutr Sci Vitaminol (Tokyo) ; 70(1): 1-8, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38417847

RESUMO

Niacin is involved in many biological reactions relating energy metabolism, redox reactions, DNA repair and longevity. Since niacin deficiency has been reported in alcoholic patients, and niacin coenzyme NAD is used as substrate to dehydrogenate ethanol in the liver, ethanol consumption can be a factor to impair niacin nutritional status. We have recently established the niacin insufficient model mice using kynurenine 3-monooxygenase knock out (KMO-/-) mice with niacin-limited diet, which lack the de novo NAD synthesis pathway from tryptophan. To evaluate the effects of chronic ethanol intake on niacin nutritional status, 4 wk old KMO-/- mice were fed 4 or 30 mg/kg nicotinic acid containing diets with or without 15% ethanol for 35 d. The mice fed 4 mg/kg nicotinic acid diet with ethanol showed lower body weight gain and niacin nutritional markers such as liver and blood NAD, and urine nicotinamide metabolites than the mice without ethanol. These animals did not show any difference in the NAD synthesis, NAD salvage and nicotinamide catabolic pathways. Chronic ethanol intake failed to affect any indices in the mice fed the 30 mg/kg nicotinic acid diet. When the diet was exchanged the 4 mg/kg for 30 mg/kg nicotinic acid diet to the mice showed chronic ethanol-induced growth retardation, their body weight rapidly increased. These results show that chronic ethanol intake impairs niacin nutritional status in the niacin insufficient mice, and enough niacin intake can prevent this impairment. Our findings also suggest that chronic ethanol intake increases niacin requirement by increase of NAD consumption.


Assuntos
Alcoolismo , Niacina , Humanos , Camundongos , Animais , Niacina/metabolismo , Estado Nutricional , NAD/metabolismo , Niacinamida , Peso Corporal
3.
J Nutr Sci Vitaminol (Tokyo) ; 69(5): 305-313, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37940571

RESUMO

Niacin is involved in many biological reactions relating energy metabolism, redox reactions, DNA repair and longevity, and low NAD levels with aging and feeding high fat diets develop and progress age-related diseases. Although recent findings suggest the requirement of niacin insufficient animal model to further study, appropriate animal models have not been established yet because niacin is biosynthesized from tryptophan via tryptophan-nicotinamide pathway. To establish model mice to evaluate niacin nutritional status, we used kynurenine 3-monooxygenase knock out (KMO-/-) mice which lack NAD biosynthesis pathway from tryptophan. To determine the niacin requirement and assess niacin nutritional markers, 4 wk old KMO-/- mice were fed 2-30 mg/kg nicotinic acid containing diets for 28 d. More than 4 mg/kg but not less than 3 mg/kg nicotinic acid containing diets induced maximum growth, and niacin nutritional markers in the blood, liver and urine increased with increase of dietary nicotinic acid. These results showed that several niacin nutritional markers reflect niacin nutritional status, niacin nutritional status can be controlled by dietary nicotinic acid, and niacin requirement for maximum growth is 4 mg/kg nicotinic acid diets in the KMO-/- mice. This animal model useful to investigate pathophysiology and mechanism of niacin deficiency, clarify the relationships between niacin nutritional status and age-related and lifestyle diseases, and evaluate factors affecting niacin nutritional status.


Assuntos
Niacina , Camundongos , Animais , Niacina/metabolismo , Estado Nutricional , Triptofano/metabolismo , NAD/metabolismo , Niacinamida
4.
Polymers (Basel) ; 15(7)2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37050410

RESUMO

Little is known about how the strength of biodegradable polymers changes during decomposition. This study investigated the changes in the tensile properties of polybutylene succinate (PBS) and basalt-fiber (BF)-reinforced PBS (PBS-BF) composite sheets during degradation in bacterial solutions. Seven days after the start of the experiment, the elongation at break of the PBS specimens decreased significantly, and the PBS-BF composite specimens were characterized by barely any change in ultimate tensile strength (UTS) after immersion in the bacteria-free medium for 7 and 56 days. Meanwhile, when immersed in the bacterial solution, the UTS of the PBS-BF composite specimens showed a tendency to decrease after 7 days. After 56 days, the UTS decreased to about half of its value immediately after fabrication. The degradation of the material was attributed to infiltration of the bacterial solution into structurally weak areas, causing decomposition throughout the material.

5.
J Med Invest ; 68(1.2): 59-70, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33994481

RESUMO

Vibrio parahaemolyticus is a foodborne bacterium that causes acute gastroenteritis through the consumption of contaminated, raw, or undercooked seafood. Cystic fibrosis transmembrane conductance regulator (CFTR) is a well-characterized chloride channel that regulates several other ion channels and transporters to maintain water homeostasis in the gut lumen. Also, CFTR is a main target of bacterial infection-associated diarrhea. Hence, the aim of this study was to clarify the contribution of CFTR in V. parahaemolyticus-induced diarrhea in a mouse model of intestinal loop fluid accumulation, with CFTR inhibitors and a CFTR knockout model. The results indicated that CFTR plays a critical role in fluid accumulation in response to V. parahaemolyticus infection. We also investigated the inflammatory association in CFTR-mediated V. parahaemolyticus-induced fluid secretion with cyclooxygenase inhibitors and found that fluid accumulation was decreased by inhibition of cyclooxygenase 2 produced by neutrophils. These findings suggest that V. parahaemolyticus-inducing infiltration and activation of neutrophils also participated in CFTR mediated fluid secretion. This study reveals an important relationship between V. parahaemolyticus-induced diarrhea and inflammation in a mouse model. J. Med. Invest. 68 : 59-70, February, 2021.


Assuntos
Gastroenterite , Vibrio parahaemolyticus , Animais , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Diarreia/etiologia , Inflamação , Camundongos
6.
J Nutr Sci Vitaminol (Tokyo) ; 67(1): 63-67, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33642466

RESUMO

B-group vitamins are required in amino acid catabolism, and recent findings suggest that urine 2-oxo acids, catabolites of amino acid, could be functional biomarkers indicating the nutritional status of B-group vitamins. To clarify the relationship between B-group vitamins and urine 2-oxo acids, we investigated the effects of B-group vitamin administration on daily changes in urinary amounts of 2-oxo acids in humans. Twenty-nine young Japanese women collected 24-h urine samples for 8 d, and took B-group vitamins for 7 d beginning on the second day of urine collection. The participants were divided into three groups on the basis of the amounts of total branched-chain 2-oxo acids, 2-oxoglutaric acid, 2-oxoadipic acid, and pyruvic acid excreted in urine. In the upper tertile, but not the middle and lower tertiles, each urine 2-oxo acid decreased from the first day of vitamin administration, and completely decreased to a normal level on the second day of administration. These results indicate that administration of B-group vitamins immediately affects 2-oxo acid metabolism in some young Japanese women. Thus, urinary 2-oxo acids could be useful and functional biomarkers for B-group vitamin status.


Assuntos
Complexo Vitamínico B , Biomarcadores , Feminino , Humanos , Japão , Cetoácidos , Estado Nutricional
7.
mSphere ; 5(2)2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-32188755

RESUMO

Vibrio parahaemolyticus is a Gram-negative halophilic pathogen that frequently causes acute gastroenteritis and occasional wound infection. V. parahaemolyticus contains several virulence factors, including type III secretion systems (T3SSs) and thermostable direct hemolysin (TDH). In particular, T3SS1 is a potent cytotoxic inducer, and T3SS2 is essential for causing acute gastroenteritis. Although much is known about manipulation of host signaling transductions by the V. parahaemolyticus effector, little is known about the host metabolomic changes modulated by V. parahaemolyticus To address this knowledge gap, we performed a metabolomic analysis of the epithelial cells during V. parahaemolyticus infection using capillary electrophoresis-time of flight mass spectrometry (CE-TOF/MS). Our results revealed significant metabolomic perturbations upon V. parahaemolyticus infection. Moreover, we identified that T3SS1's VopQ effector was responsible for inducing the significant metabolic changes in the infected cells. The VopQ effector dramatically altered the host cell's glycolytic, tricarboxylic acid cycle (TCA), and amino acid metabolisms. VopQ effector disrupted host cell redox homeostasis by depleting cellular glutathione and subsequently increasing the level of reactive oxygen species (ROS) production.IMPORTANCE The metabolic response of host cells upon infection is pathogen specific, and infection-induced host metabolic reprogramming may have beneficial effects on the proliferation of pathogens. V. parahaemolyticus contains a range of virulence factors to manipulate host signaling pathways and metabolic processes. In this study, we identified that the T3SS1 VopQ effector rewrites host metabolism in conjunction with the inflammation and cell death processes. Understanding how VopQ reprograms host cell metabolism during the infection could help us to identify novel therapeutic strategies to enhance the survival of host cells during V. parahaemolyticus infection.


Assuntos
Proteínas de Bactérias/metabolismo , Carbono/metabolismo , Células Epiteliais/metabolismo , Sistemas de Secreção Tipo III/metabolismo , Vibrio parahaemolyticus/genética , Proteínas de Bactérias/genética , Células CACO-2 , Morte Celular , Linhagem Celular , Regulação Bacteriana da Expressão Gênica , Interações Hospedeiro-Patógeno , Humanos , Metabolômica , Sistemas de Secreção Tipo III/genética , Vibrio parahaemolyticus/metabolismo , Fatores de Virulência
8.
J Med Invest ; 66(1.2): 148-152, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31064928

RESUMO

Chronic care patients undergoing hemodialysis for treatment of end-stage renal failure experience higher rates of bloodstream-associated infection due to the patients' compromised immune system and management of the bloodstream through catheters. Staphylococcus species are acommon cause of hemodialysis catheterrelated bloodstream infections. We investigated environmental bacterial contamination of dialysis wards and contamination of hemodialysis devices to determine the source of bacteria for these infections. All bacterial samples were collected by the swab method and the agarose stamp method. And which bacterium were identified by BBL CRYSTAL Kit or 16s rRNA sequences. In our data, bacterial cell number of hemodialysis device was lower than environment of patient surrounds. But Staphylococcus spp. were found predominantly on the hemodialysis device (46.8%), especially on areas frequently touched by healthcare-workers (such as Touch screen). Among Staphylococcus spp., Staphylococcus epidermidis was most frequently observed (42.1% of Staphylococcus spp.), and more surprising, 48.2% of the Staphylococcus spp. indicated high resistance for methicillin. Our finding suggests that hemodialysis device highly contaminated with bloodstream infection associated bacteria. This study can be used as a source to assess the risk of contamination-related infection and to develop the cleaning system for the better prevention for bloodstream infections in patients with hemodialysis. J. Med. Invest. 66 : 148-152, February, 2019.


Assuntos
Carga Bacteriana , Contaminação de Equipamentos , Diálise Renal/efeitos adversos , Bacteriemia/etiologia , Humanos , Diálise Renal/instrumentação
9.
PLoS One ; 13(10): e0205865, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30321237

RESUMO

Campylobacter jejuni is a major cause of bacterial foodborne illness in humans worldwide. Bacterial entry into a host eukaryotic cell involves the initial steps of adherence and invasion, which generally activate several cell-signaling pathways that induce the activation of innate defense systems, which leads to the release of proinflammatory cytokines and induction of apoptosis. Recent studies have reported that the unfolded protein response (UPR), a system to clear unfolded proteins from the endoplasmic reticulum (ER), also participates in the activation of cellular defense mechanisms in response to bacterial infection. However, no study has yet investigated the role of UPR in C. jejuni infection. Hence, the aim of this study was to deduce the role of UPR signaling via induction of ER stress in the process of C. jejuni infection. The results suggest that C. jejuni infection suppresses global protein translation. Also, 12 h of C. jejuni infection induced activation of the eIF2α pathway and expression of the transcription factor CHOP. Interestingly, bacterial invasion was facilitated by knockdown of UPR-associated signaling factors and treatment with the ER stress inducers, thapsigargin and tunicamycin, decreased the invasive ability of C. jejuni. An investigation into the mechanism of UPR-mediated inhibition of C. jejuni invasion showed that UPR signaling did not affect bacterial adhesion to or survival in the host cells. Further, Salmonella Enteritidis or FITC-dextran intake were not regulated by UPR signaling. These results indicated that the effect of UPR on intracellular intake was specifically found in C. jejuni infection. These findings are the first to describe the role of UPR in C. jejuni infection and revealed the participation of a new signaling pathway in C. jejuni invasion. UPR signaling is involved in defense against the early step of C. jejuni invasion and thus presents a potential therapeutic target for the treatment of C. jejuni infection.


Assuntos
Infecções por Campylobacter/microbiologia , Campylobacter jejuni/metabolismo , Estresse do Retículo Endoplasmático , Transdução de Sinais , Resposta a Proteínas não Dobradas , Células CACO-2 , Infecções por Campylobacter/patologia , Retículo Endoplasmático/metabolismo , Fator de Iniciação 2 em Eucariotos/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Ácido Nalidíxico/farmacologia , Tapsigargina/farmacologia , Fator de Transcrição CHOP/metabolismo , Tunicamicina/farmacologia
10.
Artigo em Inglês | MEDLINE | ID: mdl-29441328

RESUMO

Campylobacter jejuni invasion is closely related to C. jejuni pathogenicity. The intestinal epithelium contains polarized epithelial cells that form tight junctions (TJs) to provide a physical barrier against bacterial invasion. Previous studies indicated that C. jejuni invasion of non-polarized cells involves several cellular features, including lipid rafts. However, the dynamics of C. jejuni invasion of polarized epithelial cells are not fully understood. Here we investigated the interaction between C. jejuni invasion and TJ formation to characterize the mechanism of C. jejuni invasion in polarized epithelial cells. In contrast to non-polarized epithelial cells, C. jejuni invasion was not affected by depletion of lipid rafts in polarized epithelial cells. However, depletion of lipid rafts significantly decreased C. jejuni invasion in TJ disrupted cells or basolateral infection and repair of cellular TJs suppressed lipid raft-mediated C. jejuni invasion in polarized epithelial cells. In addition, pro-inflammatory cytokine, TNF-α treatment that induce TJ disruption promote C. jejuni invasion and lipid rafts depletion significantly reduced C. jejuni invasion in TNF-α treated cells. These data demonstrated that TJs prevent C. jejuni invasion from the lateral side of epithelial cells, where they play a main part in bacterial invasion and suggest that C. jejuni invasion could be increased in inflammatory condition. Therefore, maintenance of TJs integrity should be considered important in the development of novel therapies for C. jejuni infection.


Assuntos
Infecções por Campylobacter/metabolismo , Campylobacter jejuni/fisiologia , Interações Hospedeiro-Patógeno , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Junções Íntimas/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cálcio/metabolismo , Infecções por Campylobacter/microbiologia , Campylobacter jejuni/patogenicidade , Linhagem Celular , Fenômenos Eletrofisiológicos , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Lipídeos de Membrana/metabolismo , Microdomínios da Membrana , Virulência , Fatores de Virulência
11.
Infect Immun ; 85(10)2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28784926

RESUMO

Campylobacterjejuni is a foodborne pathogen that induces gastroenteritis. Invasion and adhesion are essential in the process of C. jejuni infection leading to gastroenteritis. The mucosal layer plays a key role in the system of defense against efficient invasion and adhesion by bacteria, which is modulated by several ion channels and transporters mediated by water flux in the intestine. The cystic fibrosis transmembrane conductance regulator (CFTR) plays the main role in water flux in the intestine, and it is closely associated with bacterial clearance. We previously reported that C. jejuni infection suppresses CFTR channel activity in intestinal epithelial cells; however, the mechanism and importance of this suppression are unclear. This study sought to elucidate the role of CFTR in C. jejuni infection. Using HEK293 cells that stably express wild-type and mutated CFTR, we found that CFTR attenuated C. jejuni invasion and that it was not involved in bacterial adhesion or intracellular survival but was associated with microtubule-dependent intracellular transport. Moreover, we revealed that CFTR attenuated the function of the microtubule motor protein, which caused inhibition of C. jejuni invasion, but did not affect microtubule stability. Meanwhile, the CFTR mutant G551D-CFTR, which had defects in channel activity, suppressed C. jejuni invasion, whereas the ΔF508-CFTR mutant, which had defects in maturation, did not suppress C. jejuni invasion, suggesting that CFTR suppression of C. jejuni invasion is related to CFTR maturation but not channel activity. When these findings are taken together, it may be seen that mature CFTR inhibits C. jejuni invasion by regulating microtubule-mediated pathways. We suggest that CFTR plays a critical role in cellular defenses against C. jejuni invasion and that suppression of CFTR may be an initial step in promoting cell invasion during C. jejuni infection.


Assuntos
Campylobacter jejuni/patogenicidade , Regulador de Condutância Transmembrana em Fibrose Cística/fisiologia , Microtúbulos/fisiologia , Aderência Bacteriana , Carga Bacteriana , Transporte Biológico , Infecções por Campylobacter/microbiologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Células HEK293 , Humanos , Proteínas Motores Moleculares/metabolismo , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA