Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38328182

RESUMO

Molecular mechanisms that cells employ to compartmentalize function via localization of function-specific RNA and translation are only partially elucidated. We investigate long-range projection neurons of the cerebral cortex as highly polarized exemplars to elucidate dynamic regulation of RNA localization, stability, and translation within growth cones (GCs), leading tips of growing axons. Comparison of GC-localized transcriptomes between two distinct subtypes of projection neurons- interhemispheric-callosal and corticothalamic- across developmental stages identifies both distinct and shared subcellular machinery, and intriguingly highlights enrichment of genes associated with neurodevelopmental and neuropsychiatric disorders. Developmental context-specific components of GC-localized transcriptomes identify known and novel potential regulators of distinct phases of circuit formation: long-distance growth, target area innervation, and synapse formation. Further, we investigate mechanisms by which transcripts are enriched and dynamically regulated in GCs, and identify GC-enriched motifs in 3' untranslated regions. As one example, we identify cytoplasmic adenylation element binding protein 4 (CPEB4), an RNA binding protein regulating localization and translation of mRNAs encoding molecular machinery important for axonal branching and complexity. We also identify RNA binding motif single stranded interacting protein 1 (RBMS1) as a dynamically expressed regulator of RNA stabilization that enables successful callosal circuit formation. Subtly aberrant associative and integrative cortical circuitry can profoundly affect cortical function, often causing neurodevelopmental and neuropsychiatric disorders. Elucidation of context-specific subcellular RNA regulation for GC- and soma-localized molecular controls over precise circuit development, maintenance, and function offers generalizable insights for other polarized cells, and might contribute substantially to understanding neurodevelopmental and behavioral-cognitive disorders and toward targeted therapeutics.

2.
Nat Protoc ; 17(2): 222-251, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35022617

RESUMO

During neuronal development, growth cones (GCs) of projection neurons navigate complex extracellular environments to reach distant targets, thereby generating extraordinarily complex circuitry. These dynamic structures located at the tips of axonal projections respond to substrate-bound as well as diffusible guidance cues in a neuronal subtype- and stage-specific manner to construct highly specific and functional circuitry. In vitro studies of the past decade indicate that subcellular localization of specific molecular machinery in GCs underlies the precise navigational control that occurs during circuit 'wiring'. Our laboratory has recently developed integrated experimental and analytical approaches enabling high-depth, quantitative proteomic and transcriptomic investigation of subtype- and stage-specific GC molecular machinery directly from the rodent central nervous system (CNS) in vivo. By using these approaches, a pure population of GCs and paired somata can be isolated from any neuronal subtype of the CNS that can be fluorescently labeled. GCs are dissociated from parent axons using fluid shear forces, and a bulk GC fraction is isolated by buoyancy ultracentrifugation. Subtype-specific GCs and somata are purified by recently developed fluorescent small particle sorting and established FACS of neurons and are suitable for downstream analyses of proteins and RNAs, including small RNAs. The isolation of subtype-specific GCs and parent somata takes ~3 h, plus sorting time, and ~1-2 h for subsequent extraction of molecular contents. RNA library preparation and sequencing can take several days to weeks, depending on the turnaround time of the core facility involved.


Assuntos
Cones de Crescimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA