Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Transl Med ; 15(692): eade4790, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-37075129

RESUMO

Influenza vaccines could be improved by platforms inducing cross-reactive immunity. Immunodominance of the influenza hemagglutinin (HA) head in currently licensed vaccines impedes induction of cross-reactive neutralizing stem-directed antibodies. A vaccine without the variable HA head domain has the potential to focus the immune response on the conserved HA stem. This first-in-human dose-escalation open-label phase 1 clinical trial (NCT03814720) tested an HA stabilized stem ferritin nanoparticle vaccine (H1ssF) based on the H1 HA stem of A/New Caledonia/20/1999. Fifty-two healthy adults aged 18 to 70 years old enrolled to receive either 20 µg of H1ssF once (n = 5) or 60 µg of H1ssF twice (n = 47) with a prime-boost interval of 16 weeks. Thirty-five (74%) 60-µg dose participants received the boost, whereas 11 (23%) boost vaccinations were missed because of public health restrictions in the early stages of the COVID-19 pandemic. The primary objective of this trial was to evaluate the safety and tolerability of H1ssF, and the secondary objective was to evaluate antibody responses after vaccination. H1ssF was safe and well tolerated, with mild solicited local and systemic reactogenicity. The most common symptoms included pain or tenderness at the injection site (n = 10, 19%), headache (n = 10, 19%), and malaise (n = 6, 12%). We found that H1ssF elicited cross-reactive neutralizing antibodies against the conserved HA stem of group 1 influenza viruses, despite previous H1 subtype head-specific immunity. These responses were durable, with neutralizing antibodies observed more than 1 year after vaccination. Our results support this platform as a step forward in the development of a universal influenza vaccine.


Assuntos
COVID-19 , Vacinas contra Influenza , Influenza Humana , Adolescente , Adulto , Idoso , Humanos , Pessoa de Meia-Idade , Adulto Jovem , Anticorpos Neutralizantes , Anticorpos Antivirais , Anticorpos Amplamente Neutralizantes , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Hemaglutininas , Pandemias
2.
Nat Med ; 28(2): 383-391, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35115706

RESUMO

Currently, licensed seasonal influenza vaccines display variable vaccine effectiveness, and there remains a need for novel vaccine platforms capable of inducing broader responses against viral protein domains conserved among influenza subtypes. We conducted a first-in-human, randomized, open-label, phase 1 clinical trial ( NCT03186781 ) to evaluate a novel ferritin (H2HA-Ferritin) nanoparticle influenza vaccine platform. The H2 subtype has not circulated in humans since 1968. Adults born after 1968 have been exposed to only the H1 subtype of group 1 influenza viruses, which shares a conserved stem with H2. Including both H2-naive and H2-exposed adults in the trial allowed us to evaluate memory responses against the conserved stem domain in the presence or absence of pre-existing responses against the immunodominant HA head domain. Fifty healthy participants 18-70 years of age received H2HA-Ferritin intramuscularly as a single 20-µg dose (n = 5) or a 60-µg dose either twice in a homologous (n = 25) prime-boost regimen or once in a heterologous (n = 20) prime-boost regimen after a matched H2 DNA vaccine prime. The primary objective of this trial was to evaluate the safety and tolerability of H2HA-Ferritin either alone or in prime-boost regimens. The secondary objective was to evaluate antibody responses after vaccination. Both vaccines were safe and well tolerated, with the most common solicited symptom being mild headache after both H2HA-Ferritin (n = 15, 22%) and H2 DNA (n = 5, 25%). Exploratory analyses identified neutralizing antibody responses elicited by the H2HA-Ferritin vaccine in both H2-naive and H2-exposed populations. Furthermore, broadly neutralizing antibody responses against group 1 influenza viruses, including both seasonal H1 and avian H5 subtypes, were induced in the H2-naive population through targeting the HA stem. This ferritin nanoparticle vaccine technology represents a novel, safe and immunogenic platform with potential application for pandemic preparedness and universal influenza vaccine development.


Assuntos
Vacinas contra Influenza , Influenza Humana , Nanopartículas , Orthomyxoviridae , Adulto , Anticorpos Antivirais , Ferritinas , Humanos , Imunogenicidade da Vacina , Vacinação/efeitos adversos
3.
Science ; 373(6556)2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34210892

RESUMO

The emergence of highly transmissible SARS-CoV-2 variants of concern (VOCs) that are resistant to therapeutic antibodies highlights the need for continuing discovery of broadly reactive antibodies. We identified four receptor binding domain-targeting antibodies from three early-outbreak convalescent donors with potent neutralizing activity against 23 variants, including the B.1.1.7, B.1.351, P.1, B.1.429, B.1.526, and B.1.617 VOCs. Two antibodies are ultrapotent, with subnanomolar neutralization titers [half-maximal inhibitory concentration (IC50) 0.3 to 11.1 nanograms per milliliter; IC80 1.5 to 34.5 nanograms per milliliter). We define the structural and functional determinants of binding for all four VOC-targeting antibodies and show that combinations of two antibodies decrease the in vitro generation of escape mutants, suggesting their potential in mitigating resistance development.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , SARS-CoV-2/imunologia , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/imunologia , Enzima de Conversão de Angiotensina 2/antagonistas & inibidores , Enzima de Conversão de Angiotensina 2/metabolismo , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/metabolismo , Anticorpos Antivirais/química , Anticorpos Antivirais/metabolismo , Afinidade de Anticorpos , Reações Antígeno-Anticorpo , COVID-19/virologia , Humanos , Evasão da Resposta Imune , Fragmentos Fab das Imunoglobulinas/imunologia , Fragmentos Fab das Imunoglobulinas/metabolismo , Mutação , Testes de Neutralização , Domínios Proteicos , Receptores de Coronavírus/antagonistas & inibidores , Receptores de Coronavírus/metabolismo , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
4.
Vaccine ; 39(25): 3379-3387, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34020817

RESUMO

Metastable glycosylated immunogens present challenges for GMP manufacturing. The HIV-1 envelope (Env) glycoprotein trimer is covered by N-linked glycan comprising half its mass and requires both trimer assembly and subunit cleavage to fold into a prefusion-closed conformation. This conformation, the vaccine-desired antigenic state, is both metastable to structural rearrangement and labile to subunit dissociation. Prior reported GMP manufacturing for a soluble trimer stabilized in a near-native state by disulfide (SOS) and Ile-to-Pro (IP) mutations has employed affinity methods based on antibody 2G12, which recognizes only ~30% of circulating HIV strains. Here, we develop a scalable manufacturing process based on commercially available, non-affinity resins, and we apply the process to current GMP (cGMP) production of trimers from clades A and C, which have been found to boost cross-clade neutralizing responses in vaccine-test species. The clade A trimer, which we named "BG505 DS-SOSIP.664", contained an engineered disulfide (201C-433C; DS) within gp120, which further stabilized this trimer in a prefusion-closed conformation resistant to CD4-induced triggering. BG505 DS-SOSIP.664 was expressed in a CHO-DG44 stable cell line and purified with initial and final tangential flow filtration steps, three commercially available resin-based chromatography steps, and two orthogonal viral clearance steps. The non-affinity purification enabled efficient scale-up, with a 250 L-scale cGMP run yielding 9.6 g of purified BG505 DS-SOSIP.664. Antigenic analysis indicated retention of a prefusion-closed conformation, including recognition by apex-directed and fusion peptide-directed antibodies. The developed manufacturing process was suitable for 50 L-scale production of a second prefusion-stabilized Env trimer vaccine candidate, ConC-FP8v2 RnS-3mut-2G-SOSIP.664, yielding 7.8 g of this consensus clade C trimer. The successful process development and purification scale-up of HIV-1 Env trimers from different clades by using commercially available materials provide experimental demonstration for cGMP manufacturing of trimeric HIV-Env vaccine immunogens, in an antigenically desired conformation, without the use of costly affinity resins.


Assuntos
Vacinas contra a AIDS , HIV-1 , Anticorpos Neutralizantes , Anticorpos Anti-HIV , Antígenos HIV , HIV-1/genética , Multimerização Proteica , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética
5.
J Infect Dis ; 224(1): 49-59, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-33755731

RESUMO

BACKGROUND: We investigated frequency of reinfection with seasonal human coronaviruses (HCoVs) and serum antibody response following infection over 8 years in the Household Influenza Vaccine Evaluation (HIVE) cohort. METHODS: Households were followed annually for identification of acute respiratory illness with reverse-transcription polymerase chain reaction-confirmed HCoV infection. Serum collected before and at 2 time points postinfection were tested using a multiplex binding assay to quantify antibody to seasonal, severe acute respiratory syndrome coronavirus (SARS-CoV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike proteins and SARS-CoV-2 spike subdomains and N protein. RESULTS: Of 3418 participants, 40% were followed for ≥3 years. A total of 1004 HCoV infections were documented; 303 (30%) were reinfections of any HCoV type. The number of HCoV infections ranged from 1 to 13 per individual. The mean time to reinfection with the same type was estimated at 983 days for 229E, 578 days for HKU1, 615 days for OC43, and 711 days for NL63. Binding antibody levels to seasonal HCoVs were high, with little increase postinfection, and were maintained over time. Homologous, preinfection antibody levels did not significantly correlate with odds of infection, and there was little cross-response to SARS-CoV-2 proteins. CONCLUSIONS: Reinfection with seasonal HCoVs is frequent. Binding anti-spike protein antibodies do not correlate with protection from seasonal HCoV infection.


Assuntos
Infecções por Coronavirus/epidemiologia , Coronavirus , Características da Família , Vacinas contra Influenza/imunologia , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , Síndrome Respiratória Aguda Grave/epidemiologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , COVID-19/epidemiologia , COVID-19/virologia , Coinfecção/epidemiologia , Coronavirus/classificação , Coronavirus/genética , Coronavirus/imunologia , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Reações Cruzadas/imunologia , Humanos , Vacinas contra Influenza/administração & dosagem , Influenza Humana/virologia , Estimativa de Kaplan-Meier , Michigan/epidemiologia , Modelos de Riscos Proporcionais , Vigilância em Saúde Pública , Reinfecção/epidemiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , SARS-CoV-2 , Estações do Ano , Estudos Soroepidemiológicos , Síndrome Respiratória Aguda Grave/diagnóstico , Síndrome Respiratória Aguda Grave/imunologia , Síndrome Respiratória Aguda Grave/virologia , Carga Viral
6.
bioRxiv ; 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33655252

RESUMO

The emergence of highly transmissible SARS-CoV-2 variants of concern (VOC) that are resistant to therapeutic antibodies highlights the need for continuing discovery of broadly reactive antibodies. We identify four receptor-binding domain targeting antibodies from three early-outbreak convalescent donors with potent neutralizing activity against 12 variants including the B.1.1.7 and B.1.351 VOCs. Two of them are ultrapotent, with sub-nanomolar neutralization titers (IC50 <0.0006 to 0.0102 µ g/mL; IC80 < 0.0006 to 0.0251 µ g/mL). We define the structural and functional determinants of binding for all four VOC-targeting antibodies, and show that combinations of two antibodies decrease the in vitro generation of escape mutants, suggesting potential means to mitigate resistance development. These results define the basis of therapeutic cocktails against VOCs and suggest that targeted boosting of existing immunity may increase vaccine breadth against VOCs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA