Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Cancer Med ; 13(9): e7187, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38686617

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers with limited treatment options, illustrating an urgent need to identify new drugable targets in PDACs. OBJECTIVE: Using the similarities between tumor development and normal embryonic development, which is accompanied by rapid cell expansion, we aimed to identify and characterize embryonic signaling pathways that were reinitiated during tumor formation and expansion. METHODS AND RESULTS: Here, we report that the transcription factors E2F1 and E2F8 are potential key regulators in PDAC. E2F1 and E2F8 RNA expression is mainly localized in proliferating cells in the developing pancreas and in malignant ductal cells in PDAC. Silencing of E2F1 and E2F8 in PANC-1 pancreatic tumor cells inhibited cell proliferation and impaired cell spreading and migration. Moreover, loss of E2F1 also affected cell viability and apoptosis with E2F expression in PDAC tissues correlating with expression of apoptosis and mitosis pathway genes, suggesting that E2F factors promote cell cycle regulation and tumorigenesis in PDAC cells. CONCLUSION: Our findings illustrate that E2F1 and E2F8 transcription factors are expressed in pancreatic progenitor and PDAC cells, where they contribute to tumor cell expansion by regulation of cell proliferation, viability, and cell migration making these genes attractive therapeutic targets and potential prognostic markers for pancreatic cancer.


Assuntos
Apoptose , Carcinoma Ductal Pancreático , Movimento Celular , Proliferação de Células , Fator de Transcrição E2F1 , Regulação Neoplásica da Expressão Gênica , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Fator de Transcrição E2F1/metabolismo , Fator de Transcrição E2F1/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Animais , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Sobrevivência Celular/genética , Camundongos
2.
Nat Genet ; 55(6): 973-983, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37291194

RESUMO

Distinct tissue-specific mechanisms mediate insulin action in fasting and postprandial states. Previous genetic studies have largely focused on insulin resistance in the fasting state, where hepatic insulin action dominates. Here we studied genetic variants influencing insulin levels measured 2 h after a glucose challenge in >55,000 participants from three ancestry groups. We identified ten new loci (P < 5 × 10-8) not previously associated with postchallenge insulin resistance, eight of which were shown to share their genetic architecture with type 2 diabetes in colocalization analyses. We investigated candidate genes at a subset of associated loci in cultured cells and identified nine candidate genes newly implicated in the expression or trafficking of GLUT4, the key glucose transporter in postprandial glucose uptake in muscle and fat. By focusing on postprandial insulin resistance, we highlighted the mechanisms of action at type 2 diabetes loci that are not adequately captured by studies of fasting glycemic traits.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Humanos , Insulina/genética , Estudo de Associação Genômica Ampla , Resistência à Insulina/genética , Diabetes Mellitus Tipo 2/genética , Glucose/metabolismo , Glicemia/genética
3.
Life Sci Alliance ; 5(12)2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35948367

RESUMO

Characterization of gene expression in pancreatic islets and its alteration in type 2 diabetes (T2D) are vital in understanding islet function and T2D pathogenesis. We leveraged RNA sequencing and genome-wide genotyping in islets from 188 donors to create the Islet Gene View (IGW) platform to make this information easily accessible to the scientific community. Expression data were related to islet phenotypes, diabetes status, other islet-expressed genes, islet hormone-encoding genes and for expression in insulin target tissues. The IGW web application produces output graphs for a particular gene of interest. In IGW, 284 differentially expressed genes (DEGs) were identified in T2D donor islets compared with controls. Forty percent of DEGs showed cell-type enrichment and a large proportion significantly co-expressed with islet hormone-encoding genes; glucagon (<i>GCG</i>, 56%), amylin (<i>IAPP</i>, 52%), insulin (<i>INS</i>, 44%), and somatostatin (<i>SST</i>, 24%). Inhibition of two DEGs, <i>UNC5D</i> and <i>SERPINE2</i>, impaired glucose-stimulated insulin secretion and impacted cell survival in a human ß-cell model. The exploratory use of IGW could help designing more comprehensive functional follow-up studies and serve to identify therapeutic targets in T2D.


Assuntos
Diabetes Mellitus Tipo 2 , Ilhotas Pancreáticas , Diabetes Mellitus Tipo 2/genética , Glucagon/genética , Glucagon/metabolismo , Humanos , Insulina/genética , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Serpina E2/metabolismo
4.
Hum Mol Genet ; 31(19): 3377-3391, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-35220425

RESUMO

Gestational diabetes mellitus (GDM) is associated with increased risk of pregnancy complications and adverse perinatal outcomes. GDM often reoccurs and is associated with increased risk of subsequent diagnosis of type 2 diabetes (T2D). To improve our understanding of the aetiological factors and molecular processes driving the occurrence of GDM, including the extent to which these overlap with T2D pathophysiology, the GENetics of Diabetes In Pregnancy Consortium assembled genome-wide association studies of diverse ancestry in a total of 5485 women with GDM and 347 856 without GDM. Through multi-ancestry meta-analysis, we identified five loci with genome-wide significant association (P < 5 × 10-8) with GDM, mapping to/near MTNR1B (P = 4.3 × 10-54), TCF7L2 (P = 4.0 × 10-16), CDKAL1 (P = 1.6 × 10-14), CDKN2A-CDKN2B (P = 4.1 × 10-9) and HKDC1 (P = 2.9 × 10-8). Multiple lines of evidence pointed to the shared pathophysiology of GDM and T2D: (i) four of the five GDM loci (not HKDC1) have been previously reported at genome-wide significance for T2D; (ii) significant enrichment for associations with GDM at previously reported T2D loci; (iii) strong genetic correlation between GDM and T2D and (iv) enrichment of GDM associations mapping to genomic annotations in diabetes-relevant tissues and transcription factor binding sites. Mendelian randomization analyses demonstrated significant causal association (5% false discovery rate) of higher body mass index on increased GDM risk. Our results provide support for the hypothesis that GDM and T2D are part of the same underlying pathology but that, as exemplified by the HKDC1 locus, there are genetic determinants of GDM that are specific to glucose regulation in pregnancy.


Assuntos
Diabetes Mellitus Tipo 2 , Diabetes Gestacional , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/genética , Diabetes Gestacional/genética , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Glucose , Humanos , Polimorfismo de Nucleotídeo Único/genética , Gravidez
5.
J Clin Endocrinol Metab ; 107(5): 1303-1316, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35021220

RESUMO

CONTEXT: Anemia during early pregnancy (EP) is common in developing countries and is associated with adverse health consequences for both mothers and children. Offspring of women with EP anemia often have low birth weight, which increases risk for cardiometabolic diseases, including type 2 diabetes (T2D), later in life. OBJECTIVE: We aimed to elucidate mechanisms underlying developmental programming of adult cardiometabolic disease, including epigenetic and transcriptional alterations potentially detectable in umbilical cord blood (UCB) at time of birth. METHODS: We leveraged global transcriptome- and accompanying epigenome-wide changes in 48 UCB from newborns of EP anemic Tanzanian mothers and 50 controls to identify differentially expressed genes (DEGs) in UCB exposed to maternal EP anemia. DEGs were assessed for association with neonatal anthropometry and cord insulin levels. These genes were further studied in expression data from human fetal pancreas and adult islets to understand their role in beta-cell development and/or function. RESULTS: The expression of 137 genes was altered in UCB of newborns exposed to maternal EP anemia. These putative signatures of fetal programming, which included the birth weight locus LCORL, were potentially mediated by epigenetic changes in 27 genes and associated with neonatal anthropometry. Among the DEGs were P2RX7, PIK3C2B, and NUMBL, which potentially influence beta-cell development. Insulin levels were lower in EP anemia-exposed UCB, supporting the notion of developmental programming of pancreatic beta-cell dysfunction and subsequently increased risk of T2D in offspring of mothers with EP anemia. CONCLUSIONS: Our data provide proof-of-concept on distinct transcriptional and epigenetic changes detectable in UCB from newborns exposed to maternal EP anemia.


Assuntos
Anemia , Diabetes Mellitus Tipo 2 , Adulto , Anemia/genética , Criança , Diabetes Mellitus Tipo 2/metabolismo , Feminino , Sangue Fetal/metabolismo , Desenvolvimento Fetal/genética , Humanos , Recém-Nascido , Insulina/metabolismo , Gravidez , Transcriptoma
6.
Genes (Basel) ; 13(1)2021 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-35052431

RESUMO

Parent-of-origin effects (POE) and sex-specific parental effects have been reported for plasma lipid levels, and a strong relationship exists between dyslipidemia and obesity. We aim to explore whether genetic variants previously reported to have an association to lipid traits also show POE on blood lipid levels and obesity. Families from the Botnia cohort and the Hungarian Transdanubian Biobank (HTB) were genotyped for 12 SNPs, parental origin of alleles were inferred, and generalized estimating equations were modeled to assess parental-specific associations with lipid traits and obesity. POE were observed for the variants at the TMEM57, DOCK7/ANGPTL3, LPL, and APOA on lipid traits, the latter replicated in HTB. Sex-specific parental effects were also observed; variants at ANGPTL3/DOCK7 showed POE on lipid traits and obesity in daughters only, while those at LPL and TMEM57 showed POE on lipid traits in sons. Variants at LPL and DOCK7/ANGPTL3 showed POE on obesity-related traits in Botnia and HTB, and POE effects on obesity were seen to a higher degree in daughters. This highlights the need to include analysis of POEs in genetic studies of complex traits.


Assuntos
Proteína 3 Semelhante a Angiopoietina/genética , Diabetes Mellitus Tipo 2/complicações , Dislipidemias/diagnóstico , Lipídeos/sangue , Lipase Lipoproteica/genética , Obesidade/fisiopatologia , Polimorfismo de Nucleotídeo Único , Estudos de Coortes , Diabetes Mellitus Tipo 2/patologia , Dislipidemias/sangue , Dislipidemias/etiologia , Feminino , Impressão Genômica , Genótipo , Humanos , Masculino , Pais , Fenótipo , Locos de Características Quantitativas
7.
Nat Commun ; 11(1): 4912, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32999275

RESUMO

Most signals detected by genome-wide association studies map to non-coding sequence and their tissue-specific effects influence transcriptional regulation. However, key tissues and cell-types required for functional inference are absent from large-scale resources. Here we explore the relationship between genetic variants influencing predisposition to type 2 diabetes (T2D) and related glycemic traits, and human pancreatic islet transcription using data from 420 donors. We find: (a) 7741 cis-eQTLs in islets with a replication rate across 44 GTEx tissues between 40% and 73%; (b) marked overlap between islet cis-eQTL signals and active regulatory sequences in islets, with reduced eQTL effect size observed in the stretch enhancers most strongly implicated in GWAS signal location; (c) enrichment of islet cis-eQTL signals with T2D risk variants identified in genome-wide association studies; and (d) colocalization between 47 islet cis-eQTLs and variants influencing T2D or glycemic traits, including DGKB and TCF7L2. Our findings illustrate the advantages of performing functional and regulatory studies in disease relevant tissues.


Assuntos
Glicemia/genética , Diabetes Mellitus Tipo 2/genética , Predisposição Genética para Doença , Ilhotas Pancreáticas/metabolismo , Locos de Características Quantitativas , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Glicemia/metabolismo , Linhagem Celular Tumoral , Estudos de Coortes , Diabetes Mellitus Tipo 2/sangue , Diacilglicerol Quinase/genética , Diacilglicerol Quinase/metabolismo , Elementos Facilitadores Genéticos , Feminino , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , RNA-Seq , Análise de Sequência de DNA , Proteína 2 Semelhante ao Fator 7 de Transcrição/genética , Proteína 2 Semelhante ao Fator 7 de Transcrição/metabolismo , Adulto Jovem
8.
Oncogene ; 37(19): 2515-2531, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29449696

RESUMO

Glioblastoma multiforme is a brain malignancy characterized by high heterogeneity, invasiveness, and resistance to current therapies, attributes related to the occurrence of glioma stem cells (GSCs). Transforming growth factor ß (TGFß) promotes self-renewal and bone morphogenetic protein (BMP) induces differentiation of GSCs. BMP7 induces the transcription factor Snail to promote astrocytic differentiation in GSCs and suppress tumor growth in vivo. We demonstrate that Snail represses stemness in GSCs. Snail interacts with SMAD signaling mediators, generates a positive feedback loop of BMP signaling and transcriptionally represses the TGFB1 gene, decreasing TGFß1 signaling activity. Exogenous TGFß1 counteracts Snail function in vitro, and in vivo promotes proliferation and re-expression of Nestin, confirming the importance of TGFB1 gene repression by Snail. In conclusion, novel insight highlights mechanisms whereby Snail differentially regulates the activity of the opposing BMP and TGFß pathways, thus promoting an astrocytic fate switch and repressing stemness in GSCs.


Assuntos
Neoplasias Encefálicas/metabolismo , Perfilação da Expressão Gênica/métodos , Glioblastoma/metabolismo , Células-Tronco Neoplásicas/citologia , Transdução de Sinais , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Neoplasias Encefálicas/genética , Diferenciação Celular , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Humanos , Camundongos , Transplante de Neoplasias , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Fatores de Transcrição da Família Snail/metabolismo , Fator de Crescimento Transformador beta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA