Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
FASEB J ; 38(2): e23403, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38197297

RESUMO

Androgen receptor (AR) content has been implicated in the differential response between high and low responders following resistance exercise training (RET). However, the influence of AR expression on acute skeletal muscle damage and whether it may influence the adaptive response to RET in females is poorly understood. Thus, the purpose of this exploratory examination was to 1) investigate changes in AR content during skeletal muscle repair and 2) characterize AR-mediated sex-based differences following RET. A skeletal muscle biopsy from the vastus lateralis was obtained from 26 healthy young men (n = 13) and women (n = 13) at baseline and following 300 eccentric kicks. Subsequently, participants performed 10 weeks of full-body RET and a final muscle biopsy was collected. In the untrained state, AR mRNA expression was associated with paired box protein-7 (PAX7) mRNA in males. For the first time in human skeletal muscle, we quantified AR content in the myofiber and localized to the nucleus where AR has been shown to trigger cellular outcomes related to growth. Upon eccentric damage, nuclear-associated AR (nAR) content increased (p < .05) in males and not females. Males with the greatest increase in cross-sectional area (CSA) post-RET had more (p < .05) nAR content than females with the greatest gain CSA. Collectively, skeletal muscle damage and RET increased AR protein, and both gene and hypertrophy measures revealed sex differences in relation to AR. These findings suggest that AR content but more importantly, nuclear localization, is a factor that differentiates RET-induced hypertrophy between males and females.


Assuntos
Receptores Androgênicos , Treinamento Resistido , Feminino , Humanos , Masculino , Receptores Androgênicos/genética , Androgênios , Hipertrofia , RNA Mensageiro/genética
2.
Am J Physiol Cell Physiol ; 323(6): C1577-C1585, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36280394

RESUMO

Satellite cells (SCs) and ribosomes are key determinants of the skeletal muscle adaptive response. Both are thought to increase acutely after resistance exercise and chronically with resistance training. However, the acute SC and ribosome exercise response with prior aerobic conditioning is unknown. Fourteen young men and women underwent 6 wk of single-legged aerobic conditioning followed by an acute bout of 300 eccentric contractions on each leg. Muscle biopsies were taken from the vastus lateralis of the aerobically conditioned (AC) and the control (CTL) legs before (Pre), 24 (24 h), and 48 (48 h) h post-contractions. Pre-eccentric contractions, 45S pre-rRNA and 5.8S internal transcribed spacer (ITS) expression were lower in the AC leg compared with the CTL leg. SC content (PAX7+ cells/100 fibers) in type I and mixed fibers showed a main effect of condition, where values were greater in the AC leg compared with the CTL. A main effect of condition for Pax7 and MyoD1 mRNA expression was observed where expression was greater in the AC leg compared with the CTL. AC had greater RNA concentration and mRNA expression of Ubf and Tif-1a compared with CTL. Only the AC leg increased (Pre-24h) 45S pre-rRNA, 5.8S ITS, and 28S ITS following eccentric contractions. We discovered that aerobic conditioning increased type-I SC abundance and the acute increase in ribosome content following eccentric contractions.


Assuntos
Músculo Esquelético , Células Satélites de Músculo Esquelético , Masculino , Humanos , Feminino , Músculo Esquelético/metabolismo , Precursores de RNA/metabolismo , Células Satélites de Músculo Esquelético/metabolismo , Ribossomos/genética , RNA Mensageiro/metabolismo
3.
FASEB J ; 36(9): e22500, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35971745

RESUMO

Factors influencing inter-individual variability of responses to resistance training (RT) remain to be fully elucidated. We have proposed the importance of capillarization in skeletal muscle for the satellite cell (SC) response to RT-induced muscle hypertrophy, and hypothesized that aerobic conditioning (AC) would augment RT-induced adaptations. Fourteen healthy young (22 ± 2 years) men and women underwent AC via 6 weeks of unilateral cycling followed by 10 weeks of bilateral RT to investigate how AC alters SC content, activity, and muscle hypertrophy following RT. Muscle biopsies were taken at baseline (unilateral), post AC (bilateral), and post RT (bilateral) in the aerobically conditioned (AC + RT) and unconditioned (RT) legs. Immunofluorescence was used to determine muscle capillarization, fiber size, SC content, and activity. Type I and type II fiber cross-sectional area (CSA) increased following RT, and when legs were analyzed independently, AC + RT increased type I, type II, and mixed-fiber CSA, where the RT leg tended to increase type II (p = .05), but not type I or mixed-fiber CSA. SC content, activation, and differentiation increased with RT, where type I total and quiescent SC content was greater in AC + RT compared to the RT leg. Those with the greatest capillary-to-fiber perimeter exchange index before RT had the greatest change in CSA following RT and a significant relationship was observed between type II fiber capillarization and the change in type II-fiber CSA with RT (r = 0.35). This study demonstrates that AC prior to RT can augment RT-induced muscle adaptions and that these differences are associated with increases in capillarization.


Assuntos
Treinamento Resistido , Células Satélites de Músculo Esquelético , Capilares/patologia , Feminino , Humanos , Hipertrofia/patologia , Masculino , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA