Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Econ Entomol ; 116(3): 779-789, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37030002

RESUMO

The efficacy of an existing cold disinfestation postharvest treatment targeting Ceratitis capitata (Wiedemann) in citrus was determined for the marula fly, Ceratitis cosyra (Walker). The cold tolerances of C. capitata and C. cosyra were first quantified in artificial diet at 3.5 °C at different exposure periods for up to 18 days. Ceratitis capitata was found to be more cold tolerant than C. cosyra. At 3.5 °C, the duration to achieve 99.9968% mortality was calculated to be 11.57 days for C. capitata and 9.10 days for C. cosyra. Under an existing C. capitata cold treatment schedule at 1 °C for 14 days, the conditions required for complete mortality of the third larval stage of C. cosyra in orange, Citrus sinensis (L.) Osbeck cv. Valencia, were then determined. No survivors of C. cosyra in oranges were recorded beyond 11 days of cold treatment at 1 °C. The efficacy of this C. capitata treatment for disinfestation of C. cosyra was thereafter confirmed in large scale trials in Valencia oranges. In the large-scale trial at the lowest mean temperature of 1.19 °C for 14 days, there were no survivors from a total of 85 490 treated C. cosyra third instars in oranges. Since C. capitata was shown to be more cold tolerant than C. cosyra and a large scale test demonstrated at least 99.9965% efficacy after 14 days at 1.19 °C, compared with the established effective C. capitata cold treatment of 14 days at 1.11 °C, cold disinfestation treatments for C. capitata should be at least equally effective against C. cosyra.


Assuntos
Ceratitis capitata , Citrus sinensis , Tephritidae , Animais , Larva , Dieta
2.
J Econ Entomol ; 115(4): 1115-1128, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35536661

RESUMO

A systems approach was developed as an alternative to a standalone quarantine disinfestation treatment for Thaumatotibia leucotreta in citrus fruit exported from South Africa. The systems approach consists of three measures: pre and postharvest controls and measurements, postpacking inspection, and postharvest exposure to low temperatures. Different cold treatment conditions with a range of efficacy levels can be used for this last measure. A series of trials reported here evaluated the efficacy of seven temperatures ranging from 0 to 5°C for durations from 14 d to 26 d. Mortality of the most cold-tolerant larval stages of T. leucotreta was determined. Temperatures of 0, 1, 2, and 3°C for 16, 19, 20, and 24 d respectively, induced 100% mortality of the tested populations. Probit 9 level treatment efficacy was achieved at 0 and 1°C for 16 and 19 d respectively. Mortalities higher than 90% were obtained with temperatures of 4, 4.5, and 5°C, after exposure for the longer durations. We demonstrated a significant difference in cold-induced insecticidal efficacy between 1, 2, 3, and 4°C. There was no significant difference in insecticidal efficacy between 4 and 4.5°C, but both of these temperatures were more efficacious than 5°C. The results of this study are valuable to support the use of cold treatment conditions with lower risk of fruit chilling injury in an effective systems approach, where the cold treatment efficacy can be augmented with other components of the systems approach.


Assuntos
Citrus , Mariposas , Animais , Temperatura Baixa , Larva , Temperatura
3.
J Econ Entomol ; 115(2): 482-492, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35024832

RESUMO

Bactrocera dorsalis (Hendel) is a new fruit fly pest of some fruit types in the north and north eastern areas of South Africa. In order to determine whether existing cold disinfestation treatment schedules for an indigenous fruit fly pest: Ceratitis capitata (Wiedemann) would be effective for B. dorsalis, cold tolerances of four immature stages of the two species were compared. Studies were done in an artificial carrot-based larval diet. The developmental rates of the immature stages of the two species in the carrot-based larval diet were first determined at a constant temperature of 26°C. The developmental times for eggs and three larval stages were found to be similar for the two species. Incubation times of both species after egg inoculation were determined to be 0, 3, 4, and 6 d for obtaining egg, first larval, second larval, and third larval stages respectively for the cold treatment. At a test temperature of -0.6°C, mortality rates of C. capitata eggs, first instars, second instars, and third instars were lower than those of B. dorsalis. These results demonstrate that the current cold treatment schedules for disinfestation of C. capitata can be used as equally or more efficacious treatments for B. dorsalis.


Assuntos
Ceratitis capitata , Tephritidae , Animais , Temperatura Baixa , Controle de Insetos/métodos , Larva
4.
Plants (Basel) ; 9(12)2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33371400

RESUMO

Citrus black spot (CBS) is caused by Phyllosticta citricarpa, which is classified as a quarantine organism in certain countries whose concerns are that CBS-infected fruit may be a pathway for introduction of the pathogen. This study evaluated the reproductive capability and viability of P. citricarpa under simulated conditions in which the whole fruit, peel segments, or citrus pulp with CBS lesions were discarded. Naturally infected 'Midknight' Valencia orange and 'Eureka' lemon fruit, either treated using standard postharvest sanitation, fungicide, and wax coating treatments or untreated, were placed into cold storage for 5 weeks (oranges at 4 °C and lemons at 7 °C). Thereafter, treated and untreated fruit were incubated for a further 2 weeks at conditions conducive for CBS symptom expression and formation of pycnidia. The ability of pycnidia to secrete viable pycnidiospores after whole fruit and peel segments or peel pieces from citrus pulp were exposed to sunlight at warm temperatures (±28 °C) and ±75% relative humidity levels was then investigated. The combination of postharvest treatments and cold storage effectively controlled CBS latent infections (>83.6% control) and pycnidium formation (<1.4% of lesions formed pycnidia), and the wax coating completely inhibited pycnidiospore release in fruit and peel segments. Pycnidiospores were secreted only from lesions on untreated fruit and peel segments and at low levels (4.3-8.6%) from peel pieces from pulped treated fruit. However, spore release rapidly declined when exposed to sunlight conditions (1.4% and 0% after 2 and 3 days, respectively). The generally poor reproductive ability and viability of CBS fruit lesions on harvested fruit, particularly when exposed to sunlight conditions, supports the conclusion that citrus fruit without leaves is not an epidemiologically significant pathway for the entry, establishment, and spread of P. citricarpa.

5.
J Econ Entomol ; 113(2): 700-711, 2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-31922201

RESUMO

A systems approach was previously developed for mitigating phytosanitary risk of Thaumatotibia leucotreta (Meyrick) in citrus fruit exported from South Africa, as an alternative to a standalone cold disinfestation treatment. The present study first tested the original systems approach by applying it on a semicommercial scale in 10 Nova mandarin orchards. Fruit were inspected at points in the production, packing, and simulated shipping process, to assess performance of the systems approach. Additional data were obtained from 17 Valencia orange orchards and six packinghouses. In the second part of this study, the systems approach was accordingly revised and improved, consisting of three measures: 1) preharvest controls and measurements and postpicking sampling, inspection, and packinghouse procedures; 2) postpacking sampling and inspection; and 3) shipping conditions. The model quantifying the effectiveness of the systems approach was improved by correcting errors in the original version, updating parameter values and adding a component that provides for comparison with the risk mitigation provided by a standalone disinfestation treatment. Consequently, the maximum potential proportion of fruit that may be infested with live T. leucotreta after application of the improved systems approach is no greater than the proportion of fruit that may be infested after application of a Probit 9 efficacy postharvest disinfestation treatment to fruit with a 2% pretreatment infestation. The probability of a mating pair surviving is also determined. The model enables a priori determination of the required threshold levels for any of the three measures, based on quantification of the other two measures.


Assuntos
Citrus , Mariposas , Animais , Frutas , Controle Biológico de Vetores , África do Sul , Análise de Sistemas
6.
Environ Entomol ; 42(5): 831-40, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24331596

RESUMO

Ceratitis capitata (Wiedemann), Ceratitis rosa Karsch, and Ceratitis cosyra (Walker) are fruit fly species (Diptera: Tephritidae) of economic importance in South Africa. These pests cause direct damage to a number of commercially produced fruit and are of phytosanitary concern. A study was conducted to determine the distribution, relative abundance, and seasonal occurrence of the three species in different climatic regions of South Africa. The relative abundance and seasonal phenology of C. capitata and C. rosa were also compared between production areas and home gardens in Stellenbosch, Western Cape. Yellow bucket traps baited with Biolure were used to trap the flies over a 2-yr period in the different sampling areas. Different fruit types were sampled in Stellenbosch to determine fruit fly infestation. C. capitata was found to have a widespread distribution in South Africa, whereas C. rosa were absent from or only present in low numbers in the drier regions. C. cosyra was restricted to the North East and East coast, following a similar pattern to the distribution of marula, Sclerocarrya birrea, an important wild host. Fruit in home gardens provided a breeding ground for C. capitata and C. rosa and a source for infestation of orchards when fruit started to mature, highlighting the need for an area-wide strategy for the control of fruit flies.


Assuntos
Distribuição Animal , Tephritidae/fisiologia , Animais , Ceratitis capitata/fisiologia , Clima , Ecossistema , Feminino , Masculino , Dinâmica Populacional , Estações do Ano , África do Sul
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA