Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Bioconjug Chem ; 34(5): 866-879, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37145959

RESUMO

We conducted a biophysical study to investigate the self-assembling and albumin-binding propensities of a series of fatty acid-modified locked nucleic acid (LNA) antisense oligonucleotide (ASO) gapmers specific to the MALAT1 gene. To this end, a series of biophysical techniques were applied using label-free ASOs that were covalently modified with saturated fatty acids (FAs) of varying length, branching, and 5'/3' attachment. Using analytical ultracentrifugation (AUC), we demonstrate that ASOs conjugated with fatty acids longer than C16 exhibit an increasing tendency to form self-assembled vesicular structures. The C16 to C24 conjugates interacted via the fatty acid chains with mouse and human serum albumin (MSA/HSA) to form stable adducts with near-linear correlation between FA-ASO hydrophobicity and binding strength to mouse albumin. This was not observed for the longer fatty acid chain ASO conjugates (>C24) under the experimental conditions applied. The longer FA-ASO however adopted self-assembled structures with increasing intrinsic stabilities proportional to the fatty acid chain length. For instance, FA chain lengths smaller than C24 readily formed self-assembled structures containing 2 (C16), 6 (C22, bis-C12), and 12 (C24) monomers, as measured by analytical ultracentrifugation (AUC). Incubation with albumin disrupted these supramolecular architectures to form FA-ASO/albumin complexes mostly with 2:1 stoichiometry and binding affinities in the low micromolar range, as determined by isothermal titration calorimetry (ITC) and analytical ultracentrifugation (AUC). Binding of FA-ASOs underwent a biphasic pattern for medium-length FA chain lengths (>C16) with an initial endothermic phase of particulate disruption, followed by an exothermic binding event to the albumin. Conversely, ASO modified with di-palmitic acid (C32) formed a strong, hexameric complex. This structure was not disrupted when incubated with albumin under conditions above the critical nanoparticle concentration (CNC; <0.4 µM). It is noteworthy that the interaction of parent, fatty acid-free malat1 ASO to albumin was below detectability by ITC (KD ≫150 µM). This work demonstrates that the nature of mono- vs multimeric structures of hydrophobically modified ASOs is governed by the hydrophobic effect. Consequently, supramolecular assembly to form particulate structures is a direct consequence of the fatty acid chain length. This provides opportunities to exploit the concept of hydrophobic modification to influence pharmacokinetics (PK) and biodistribution for ASOs in two ways: (1) binding of the FA-ASO to albumin as a carrier vehicle and (2) self-assembly resulting in albumin-inert, supramolecular architectures. Both concepts create opportunities to influence biodistribution, receptor interaction, uptake mechanism, and pharmacokinetics/pharmacodynamics (PK/PD) properties in vivo, potentially enabling access to extrahepatic tissues in sufficient concentration to treat disease.


Assuntos
Ácidos Graxos , RNA Longo não Codificante , Animais , Humanos , Camundongos , Distribuição Tecidual , Oligonucleotídeos Antissenso/química , Albumina Sérica Humana/metabolismo
2.
Chembiochem ; 15(4): 537-42, 2014 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-24504694

RESUMO

The Hippo signaling pathway, which controls organ size in animals, is altered in various human cancers. The TEAD transcription factors, the most downstream elements in this pathway, are regulated by different cofactors, such as the Vgll (vestigial-like) proteins. Having studied the interaction between Vgll1-derived peptides and human TEAD4, we show that, although it lacks a key secondary structure element required for tight binding by two other TEAD cofactors (YAP and TAZ), Vgll1-derived peptides bind to TEAD with nanomolar affinity. We identify a ß-strand:loop:α-helix motif as the minimal Vgll binding site. Finally, we reveal an unexpected difference between mouse and human Vgll1-derived peptides.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas Musculares/química , Fatores de Transcrição/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Camundongos , Dados de Sequência Molecular , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Fatores de Transcrição de Domínio TEA , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Chembiochem ; 14(10): 1218-25, 2013 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-23780915

RESUMO

The Hippo pathway controls cell homeostasis, and its deregulation can lead to human diseases. In this pathway, the YAP and TAZ transcriptional cofactors play a key role in stimulating gene transcription through their interaction with the TEAD transcriptional factors. Our study of YAP and TAZ peptides in biochemical and biophysical assays shows that both proteins have essentially the same affinity for TEAD. Molecular modeling and structural biology data suggest that they also bind to the same site on TEAD. However, this apparent similarity hides differences in the ways in which the two proteins interact with TEAD. The secondary structure elements of their TEAD binding site do not contribute equally to the overall affinity, and critical interactions with TEAD are made through different residues. This convergent optimization of the YAP/TAZ TEAD binding site suggests that the similarity in the affinities of binding of YAP to TEAD and of TAZ to TEAD is important for Hippo pathway functionality.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas Musculares/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Transcrição/metabolismo , Aciltransferases , Sequência de Aminoácidos , Animais , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Via de Sinalização Hippo , Humanos , Imuno-Histoquímica , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Musculares/química , Proteínas Musculares/genética , Mutagênese Sítio-Dirigida , Peptídeos/química , Peptídeos/genética , Peptídeos/metabolismo , Domínios e Motivos de Interação entre Proteínas , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Fatores de Transcrição de Domínio TEA , Fatores de Transcrição/química , Fatores de Transcrição/genética
4.
J Enzyme Inhib Med Chem ; 27(2): 194-200, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21635207

RESUMO

The protein kinase field is a very active research area in the pharmaceutical industry and many activities are ongoing to identify inhibitors of these proteins. The design of new chemical entities with improved pharmacological properties requires a deeper understanding of the factors that modulate inhibitor-kinase interactions. In this report, we studied the effect of two of these factors--the magnesium ion cofactor and the protein substrate--on inhibitors of the type I insulin-like growth factor receptor. Our results show that the concentration of magnesium ion influences the potency of adenosine triphosphate (ATP) competitive inhibitors, suggesting an explanation for the observation that such compounds retain their nanomolar potency in cells despite the presence of millimolar levels of ATP. We also showed that the peptidic substrate affects the potency of these inhibitors in a different manner, suggesting that the influence of this substrate on compound potency should be taken into consideration during drug discovery.


Assuntos
Trifosfato de Adenosina/metabolismo , Magnésio/metabolismo , Fragmentos de Peptídeos/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/química , Receptor IGF Tipo 1/antagonistas & inibidores , Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Humanos , Cinética , Conformação Proteica/efeitos dos fármacos , Pirimidinas/farmacologia , Pirróis/farmacologia , Estaurosporina/farmacologia , Especificidade por Substrato
5.
J Biomol Screen ; 16(5): 552-6, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21441415

RESUMO

The development of new drugs with better pharmacological and safety properties mandates the optimization of several parameters. Today, potency is often used as the sole biochemical parameter to identify and select new molecules. Surprisingly, thermodynamics, which is at the core of any interaction, is rarely used in drug discovery, even though it has been suggested that the selection of scaffolds according to thermodynamic criteria may be a valuable strategy. This poor integration of thermodynamics in drug discovery might be due to difficulties in implementing calorimetry experiments despite recent technological progress in this area. In this report, the authors show that fluorescence-based thermal shift assays could be used as prescreening methods to identify compounds with different thermodynamic profiles. This approach allows a reduction in the number of compounds to be tested in calorimetry experiments, thus favoring greater integration of thermodynamics in drug discovery.


Assuntos
Bioensaio , Descoberta de Drogas , Fluorescência , Termodinâmica , Calorimetria , Cinética , Ligação Proteica/fisiologia , Desnaturação Proteica , Receptor IGF Tipo 1/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/metabolismo , Temperatura
6.
J Biomol Tech ; 21(1): 9-17, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20357977

RESUMO

Protein kinases can adopt multiple protein conformations depending on their activation status. Recently, in drug discovery, a paradigm shift has been initiated, moving from inhibition of fully activated, phosphorylated kinases to targeting the inactive, unphosphorylated forms. For identification and characterization of putative inhibitors, also interacting with the latent kinase conformation outside of the kinase domain, highly purified and homogeneous protein preparations of unphosphorylated kinases are essential. The kinetic parameters of nonphosphorylated kinases cannot be assessed easily by standard kinase enzyme assays as a result of their intrinsic autophosphorylation activity. Kinetic binding rate constants of inhibitor-protein interactions can be measured by biophysical means upon protein immobilization on chips. Protein immobilization can be achieved under mild conditions by binding biotinylated proteins to streptavidin-coated chips, exploiting the strong and highly specific streptavidin-biotin interaction. In the work reported here, the cytoplasmic domains of insulin receptor and insulin-like growth factor-1 receptor fused to a biotin ligase recognition sequence were coexpressed individually with the phosphatase YopH and the biotin-protein ligase BirA upon triple infection in insect cells. Tandem affinity purification yielded pure cytoplasmic kinase domains as judged by gel electrophoresis and HPLC. Liquid chromatography-mass spectrometry analysis showed the absence of any protein phosphorylation. Coexpression of BirA led to quantitative and site-specific biotinylation of the kinases, which had no influence on the catalytic activity of the kinases, as demonstrated by the identical phosphorylation pattern upon autoactivation and by enzymatic assay. This coexpression approach should be applicable to other protein kinases as well and should greatly facilitate the production of protein kinases in their phosphorylated and unphosphorylated state suitable for enzymatic and biophysical studies.


Assuntos
Baculoviridae/metabolismo , Biologia Molecular/métodos , Processamento de Proteína Pós-Traducional , Receptor IGF Tipo 1/metabolismo , Receptor de Insulina/metabolismo , Animais , Baculoviridae/genética , Biotinilação , Western Blotting , Extratos Celulares , Cromatografia Líquida de Alta Pressão , Eletroforese em Gel de Poliacrilamida , Humanos , Espectrometria de Massas , Fosforilação , Estrutura Terciária de Proteína , Receptor IGF Tipo 1/química , Receptor IGF Tipo 1/isolamento & purificação , Receptor de Insulina/química , Receptor de Insulina/isolamento & purificação , Coloração e Rotulagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA