Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 734: 139108, 2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32460067

RESUMO

Organic micropollutants (OMPs) such as polycyclic aromatic hydrocarbons, nonylphenols and pharmaceutical products are ubiquitous in organic wastes generated by most human activities. Those wastes are mainly recycled by land spreading, most often after treatments, such as liming, dewatering, composting or anaerobic digestion. It has been shown essentially at lab scales that biological treatments have an effect on the removal of some OMPs. However, less is known on the role of each step of industrial treatment lines combining physico-chemical and biological treatments on the OMP fate and removal. The present study focuses on the impact of waste treatment on the fate of 53 OMPs along 10 industrial treatment lines treating urban, agricultural wastes or mixtures. The combination of studying a diversity of organic wastes and of OMPs with different characteristics (solubility, ionic charges, hydrophobicity etc.), sampling in situ industrial sites, quantifying native OMP concentrations and looking at each step of complete treatment lines allows for a global and representative view of the OMP fate in the French organic waste treatment sector. Less studied wastes, i.e. territorial mixtures, revealed intermediate OMP contents and compositions, between urban and agricultural wastes. Dewatering and liming, usually dismissed, had a noticeable effect on concentrations. Anaerobic digestion and composting had significant effects on the removal of all pollutant families. Combination of processes enhanced most OMP dissipation. Here we showed for the first time that the process type rather than the waste origin affects dissipation of organic micropollutants. Such data could be used to build and validate dynamic models for the fate of OMPs on solid waste treatment plants.


Assuntos
Resíduos Sólidos , Anaerobiose , Compostagem , Humanos , Esgotos , Eliminação de Resíduos Líquidos
2.
J Comput Biol ; 15(1): 105-28, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18271720

RESUMO

T-cell activation is a crucial step in mounting of the immune response. The dynamics of T-cell receptor (TCR) specific recognition of peptide presented by major histocompatibility complex (MHC) molecule decides the fate of the T cell. Several biochemical interactions interfere resulting in a highly complex mechanism that would be difficult to understand without computer help. The aim of the present study was to define a mathematical model in order to approach the kinetics of monoclonal T-cell-specific activation. The reaction scheme was first described and the model was tested using experimental parameters from the published data. Simulations were concordant with experimental data showing proportional decrease of membrane TCR and production of interleukin-2 (IL-2). Agonist and antagonist peptides induce different levels of intracellular signal that could make the yes or no decision for entry to cell cycle. Different conditions (peptide concentrations, initial TCR density and exogenous IL-2 levels) can be tested. Several parameters are missing for parameters estimation and adjustment before it could be adapted for a polyclonal T-cell reaction model. However, the model should be of interest in setting experiments, simulation of clinical responses and optimization of preventive or therapeutic immunotherapy.


Assuntos
Ativação Linfocitária/imunologia , Modelos Imunológicos , Linfócitos T/imunologia , Animais , Apresentação de Antígeno/imunologia , Antígenos CD/imunologia , Humanos , Interleucina-2/imunologia , Cinética , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Interleucina/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA