Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
1.
iScience ; 27(9): 110642, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39252970

RESUMO

Etomoxir has been used for decades as a popular small molecule inhibitor of carnitine palmitoyltransferase I, Cpt1, to block mitochondrial fatty acid ß-oxidation. To test the specificity of etomoxir, we generated click chemistry-enabled reagents to label etomoxir binding proteins in situ. Etomoxir bound to Cpt1, but also bound to a large array of diverse proteins that metabolize and transport fatty acids in the cytoplasm, peroxisome, and mitochondria. Many of the most abundant proteins identified in primary hepatocytes were peroxisomal proteins. The loss of Pex5, required for the import of peroxisomal matrix proteins, eliminated many of these etomoxir-labeled proteins. By utilizing the promiscuous, covalent, and fatty acid mimetic properties of etomoxir, etomoxir targets of fatty acid ω-oxidation were revealed following the loss of Pex5. These data demonstrate that etomoxir is not specific for Cpt1 and is not appropriate as a tool to distinguish the biological effects of fatty acid oxidation.

2.
bioRxiv ; 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39345567

RESUMO

The chromosome 15q11.2 locus is deleted in 1.5% of patients with genetic epilepsy and confers a risk for intellectual disability and schizophrenia. Individuals with this deletion demonstrate increased cortical thickness, decreased cortical surface area and white matter abnormalities. Human induced pluripotent stem cell (iPSC)-derived neural progenitor cells (NPC) from 15q11.2 deletion individuals exhibit early adhesion junction and migration abnormalities, but later neuronal development and function have not been fully assessed. Imaging studies indicating altered structure and network connectivity in the anterior brain regions and the cingulum suggest that in addition to alterations in progenitor dynamics, there may also be structural and functional changes within discrete networks of mature neurons. To explore this, we generated human forebrain cortical neurons from iPSCs derived from individuals with or without 15q11.2 deletion and used longitudinal imaging and multielectrode array analysis to evaluate neuronal development over time. 15q11.2 deleted neurons exhibited fewer connections and an increase in inhibitory neurons. Individual neurons had decreased neurite complexity and overall decreased neurite length. These structural changes were associated with a reduction in multiunit action potential generation, bursting and synchronization. The 15q11.2 deleted neurons also demonstrated specific functional deficits in glutamate and GABA mediated network activity and synchronization with a delay in the maturation of the inhibitory response to GABA. These data indicate that deletion of the 15q11.2 region is sufficient to impair the structural and functional maturation of cortical neuron networks which likely underlies the pathologic changes in humans with the 15q11.2 deletion.

3.
Front Endocrinol (Lausanne) ; 15: 1182519, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38505743

RESUMO

Background: Alzheimer's disease (AD) is increasing in prevalence, but effective treatments for its cognitive impairment remain severely limited. This study investigates the impact of ketone body production through dietary manipulation on memory in persons with mild cognitive impairment due to early AD and explores potential mechanisms of action. Methods: We conducted a 12-week, parallel-group, controlled feasibility trial of a ketogenic diet, the modified Atkins diet (MAD), compared to a control diet in patients with cognitive impairments attributed to AD. We administered neuropsychological assessments, including memory tests, and collected blood samples at baseline and after 12 weeks of intervention. We performed untargeted lipidomic and targeted metabolomic analyses on plasma samples to detect changes over time. Results: A total of 839 individuals were screened to yield 38 randomized participants, with 20 assigned to receive MAD and 18 assigned to receive a control diet. Due to attrition, only 13 in the MAD arm and nine in the control arm were assessed for the primary endpoint, with two participants meeting ketosis levels used to define MAD adherence criteria. The average change from baseline in the Memory Composite Score was 1.37 (95% CI: -0.87, 4.90) points higher in the MAD group compared to the control group. The effect size of the intervention on baseline MAD change was moderate (Cohen's D = 0.57, 95% CI: -0.67, 1.33). In the 15 participants (nine MAD, six control) assessed for lipidomic and metabolomic-lipidomics and metabolomics, 13 metabolites and 10 lipids showed significant changes from baseline to 12 weeks, including triacylglycerols (TAGs, 50:5, 52:5, and 52:6), sphingomyelins (SM, 44:3, 46:0, 46:3, and 48:1), acetoacetate, fatty acylcarnitines, glycerol-3-phosphate, and hydroxy fatty acids. Conclusions: Attrition was greatest between baseline and week 6. All participants retained at week 6 completed the study. Despite low rates of adherence by criteria defined a priori, lipidomic and metabolomic analyses indicate significant changes from baseline in circulating lipids and metabolites between MAD and control participants at 12-week postrandomization, and MAD participants showed greater, albeit nonsignificant, improvement in memory.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Dieta Rica em Proteínas e Pobre em Carboidratos , Humanos , Idoso , Doença de Alzheimer/complicações , Estudos de Viabilidade , Disfunção Cognitiva/etiologia , Ácidos Graxos
4.
J Extracell Vesicles ; 13(2): e12404, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38326288

RESUMO

Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly.


Assuntos
Exossomos , Vesículas Extracelulares , Vesículas Extracelulares/metabolismo , Exossomos/metabolismo , Transporte Biológico , Biomarcadores/metabolismo , Fenótipo
5.
Transl Neurodegener ; 12(1): 56, 2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-38049923

RESUMO

BACKGROUND: Cognitive decline in Alzheimer's disease (AD) is associated with hyperphosphorylated tau (pTau) propagation between neurons along synaptically connected networks, in part via extracellular vesicles (EVs). EV biogenesis is triggered by ceramide enrichment at the plasma membrane from neutral sphingomyelinase2 (nSMase2)-mediated cleavage of sphingomyelin. We report, for the first time, that human tau expression elevates brain ceramides and nSMase2 activity. METHODS: To determine the therapeutic benefit of inhibiting this elevation, we evaluated PDDC, the first potent, selective, orally bioavailable, and brain-penetrable nSMase2 inhibitor in the transgenic PS19 AD mouse model. Additionally, we directly evaluated the effect of PDDC on tau propagation in a mouse model where an adeno-associated virus (AAV) encoding P301L/S320F double mutant human tau was stereotaxically-injected unilaterally into the hippocampus. The contralateral transfer of the double mutant human tau to the dentate gyrus was monitored. We examined ceramide levels, histopathological changes, and pTau content within EVs isolated from the mouse plasma. RESULTS: Similar to human AD, the PS19 mice exhibited increased brain ceramide levels and nSMase2 activity; both were completely normalized by PDDC treatment. The PS19 mice also exhibited elevated tau immunostaining, thinning of hippocampal neuronal cell layers, increased mossy fiber synaptophysin immunostaining, and glial activation, all of which were pathologic features of human AD. PDDC treatment reduced these changes. The plasma of PDDC-treated PS19 mice had reduced levels of neuronal- and microglial-derived EVs, the former carrying lower pTau levels, compared to untreated mice. In the tau propagation model, PDDC normalized the tau-induced increase in brain ceramides and significantly reduced the amount of tau propagation to the contralateral side. CONCLUSIONS: PDDC is a first-in-class therapeutic candidate that normalizes elevated brain ceramides and nSMase2 activity, leading to the slowing of tau spread in AD mice.


Assuntos
Doença de Alzheimer , Animais , Humanos , Camundongos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Ceramidas/metabolismo , Camundongos Transgênicos , Neurônios/metabolismo
6.
Front Mol Biosci ; 10: 1173039, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37936721

RESUMO

Introduction: This study aims to test the hypothesis that increased ketone body production resulting from a ketogenic diet (KD) will correlate with reductions in pro-inflammatory cytokines and lipid subspecies and improved clinical outcomes in adults treated with an adjunctive ketogenic diet for super-refractory status epilepticus (SRSE). Methods: Adults (18 years or older) were treated with a 4:1 (fat: carbohydrate and protein) ratio of enteral KD as adjunctive therapy to pharmacologic seizure suppression in SRSE. Blood and urine samples and clinical measurements were collected at baseline (n = 10), after 1 week (n = 8), and after 2 weeks of KD (n = 5). In addition, urine acetoacetate, serum ß-hydroxybutyrate, lipidomics, pro-inflammatory cytokines (IL-1ß and IL-6), chemokines (CCL3, CCL4, and CXCL13), and clinical measurements were obtained at these three time points. Univariate and multivariate data analyses were performed to determine the correlation between ketone body production and circulating lipids, inflammatory biomarkers, and clinical outcomes. Results: Changes in lipids included an increase in ceramides, mono-hexosylceramide, sphingomyelin, phosphocholine, and phosphoserines, and there was a significant reduction in pro-inflammatory mediators, IL-6 and CXCL13, seen at 1 and 2 weeks of KD. Higher blood ß-hydroxybutyrate levels at baseline correlated with better clinical outcomes; however, ketone body production did not correlate with other variables during treatment. Higher chemokine CCL3 levels following treatment correlated with a longer stay in the intensive care unit and a higher modified Rankin Scale score (worse neurologic disability) at discharge and 6-month follow up. Discussion: Adults receiving an adjunctive enteral ketogenic diet for super-refractory status epilepticus exhibit alterations in select pro-inflammatory cytokines and lipid species that may predict their response to treatment.

7.
Breast Cancer Res ; 25(1): 148, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-38017485

RESUMO

BACKGROUND: Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype and leads to the poorest patient outcomes despite surgery and chemotherapy treatment. Exploring new molecular mechanisms of TNBC that could lead to the development of novel molecular targets are critically important for improving therapeutic options for treating TNBC. METHODS: We sought to identify novel therapeutic targets in TNBC by combining genomic and functional studies with lipidomic analysis, which included mechanistic studies to elucidate the pathways that tie lipid profile to critical cancer cell properties. Our studies were performed in a large panel of human breast cancer cell lines and patient samples. RESULTS: Comprehensive lipid profiling revealed that phospholipid metabolism is reprogrammed in TNBC cells. We discovered that patatin-like phospholipase domain-containing lipase 8 (PNPLA8) is overexpressed in TNBC cell lines and tissues from breast cancer patients. Silencing of PNPLA8 disrupted phospholipid metabolic reprogramming in TNBC, particularly affecting the levels of phosphatidylglycerol (PG), phosphatidylcholine (PC), lysophosphatidylcholine (LPC) and glycerophosphocholine (GPC). We showed that PNPLA8 is essential in regulating cell viability, migration and antioxidation in TNBC cells and promoted arachidonic acid and eicosanoid production, which in turn activated PI3K/Akt/Gsk3ß and MAPK signaling. CONCLUSIONS: Our study highlights PNPLA8 as key regulator of phospholipid metabolic reprogramming and malignant phenotypes in TNBC, which could be further developed as a novel molecular treatment target.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Fenótipo , Fosfatidilinositol 3-Quinases/genética , Fosfolipídeos/uso terapêutico , Neoplasias de Mama Triplo Negativas/patologia
8.
Proc Natl Acad Sci U S A ; 120(28): e2219543120, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37406092

RESUMO

Although HIV-1 Gag is known to drive viral assembly and budding, the precise mechanisms by which the lipid composition of the plasma membrane is remodeled during assembly are incompletely understood. Here, we provide evidence that the sphingomyelin hydrolase neutral sphingomyelinase 2 (nSMase2) interacts with HIV-1 Gag and through the hydrolysis of sphingomyelin creates ceramide that is necessary for proper formation of the viral envelope and viral maturation. Inhibition or depletion of nSMase2 resulted in the production of noninfectious HIV-1 virions with incomplete Gag lattices lacking condensed conical cores. Inhibition of nSMase2 in HIV-1-infected humanized mouse models with a potent and selective inhibitor of nSMase2 termed PDDC [phenyl(R)-(1-(3-(3,4-dimethoxyphenyl)-2, 6-dimethylimidazo[1,2-b]pyridazin-8-yl) pyrrolidin-3-yl)-carbamate] produced a linear reduction in levels of HIV-1 in plasma. If undetectable plasma levels of HIV-1 were achieved with PDDC treatment, viral rebound did not occur for up to 4 wk when PDDC was discontinued. In vivo and tissue culture results suggest that PDDC selectively kills cells with actively replicating HIV-1. Collectively, this work demonstrates that nSMase2 is a critical regulator of HIV-1 replication and suggests that nSMase2 could be an important therapeutic target with the potential to kill HIV-1-infected cells.


Assuntos
HIV-1 , Esfingomielina Fosfodiesterase , Camundongos , Animais , Esfingomielina Fosfodiesterase/metabolismo , HIV-1/metabolismo , Esfingomielinas/metabolismo , Membrana Celular/metabolismo
9.
Proc Natl Acad Sci U S A ; 120(28): e2219475120, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37406093

RESUMO

HIV-1 assembly occurs at the inner leaflet of the plasma membrane (PM) in highly ordered membrane microdomains. The size and stability of membrane microdomains is regulated by activity of the sphingomyelin hydrolase neutral sphingomyelinase 2 (nSMase2) that is localized primarily to the inner leaflet of the PM. In this study, we demonstrate that pharmacological inhibition or depletion of nSMase2 in HIV-1-producer cells results in a block in the processing of the major viral structural polyprotein Gag and the production of morphologically aberrant, immature HIV-1 particles with severely impaired infectivity. We find that disruption of nSMase2 also severely inhibits the maturation and infectivity of other primate lentiviruses HIV-2 and simian immunodeficiency virus, has a modest or no effect on nonprimate lentiviruses equine infectious anemia virus and feline immunodeficiency virus, and has no effect on the gammaretrovirus murine leukemia virus. These studies demonstrate a key role for nSMase2 in HIV-1 particle morphogenesis and maturation.


Assuntos
HIV-1 , Vírus da Anemia Infecciosa Equina , Animais , Gatos , Cavalos , Camundongos , HIV-1/fisiologia , Esfingomielina Fosfodiesterase/metabolismo , Montagem de Vírus , Lentivirus
10.
Res Sq ; 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37502930

RESUMO

Background: Cognitive decline in Alzheimer's disease (AD) is associated with prion-like tau propagation between neurons along synaptically connected networks, in part via extracellular vesicles (EV). EV biogenesis is triggered by ceramide enrichment at the plasma membrane from neutral sphingomyelinase2(nSMase2)-mediated cleavage of sphingomyelin. We report, for the first time, that tau expression triggers an elevation in brain ceramides and nSMase2 activity. Methods: To determine the therapeutic benefit of inhibiting this elevation, we evaluated the efficacy of PDDC, the first potent, selective, orally bioavailable, and brain-penetrable nSMase2 inhibitor, in the PS19 tau transgenic AD murine model. Changes in brain ceramide and sphingomyelin levels, Tau content, histopathology, and nSMase2 target engagement were monitored, as well as changes in the number of brain-derived EVs in plasma and their Tau content. Additionally, we evaluated the ability of PDDC to impede tau propagation in a murine model where an adeno-associated virus(AAV) encoding for P301L/S320F double mutant human tau was stereotaxically-injected unilaterally into the hippocampus and the contralateral transfer to the dentate gyrus was monitored. Results: Similar to human AD, PS19 mice exhibited increased brain ceramides and nSMase2 activity; both were completely normalized by PDDC treatment. PS19 mice exhibited elevated tau immunostaining, thinning of hippocampal neuronal cell layers, increased mossy fiber synaptophysin immunostaining, and glial activation, all pathologic features of human AD. PDDC treatment significantly attenuated these aberrant changes. Mouse plasma isolated from PDDC-treated PS19 mice exhibited reduced levels of neuron- and microglia-derived EVs, the former carrying lower phosphorylated Tau(pTau) levels, compared to untreated mice. In the AAV tau propagation model, PDDC normalized the tau-induced increase in brain ceramides and significantly decreased tau spreading to the contralateral side. Conclusions: PDDC is a first-in-class therapeutic candidate that normalizes elevated brain ceramides and nSMase2 activity leading to the slowing of tau spread in AD mice.

11.
Neurobiol Dis ; 177: 105987, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36603748

RESUMO

Extracellular vesicles (EVs) have been proposed to regulate the deposition of Aß. Multiple publications have shown that APP, amyloid processing enzymes and Aß peptides are associated with EVs. However, very little Aß is associated with EVs compared with the total amount Aß present in human plasma, CSF, or supernatants from cultured neurons. The involvement of EVs has largely been inferred by pharmacological inhibition or whole body deletion of the sphingomyelin hydrolase neutral sphingomyelinase-2 (nSMase2) that is a key regulator for the biogenesis of at-least one population of EVs. Here we used a Cre-Lox system to selectively delete nSMase2 from pyramidal neurons in APP/PS1 mice (APP/PS1-SMPD3-Nex1) and found a âˆ¼ 70% reduction in Aß deposition at 6 months of age and âˆ¼ 35% reduction at 12 months of age in both cortex and hippocampus. Brain ceramides were increased in APP/PS1 compared with Wt mice, but were similar to Wt in APP/PS1-SMPD3-Nex1 mice suggesting that elevated brain ceramides in this model involves neuronally expressed nSMase2. Reduced levels of PSD95 and deficits of long-term potentiation in APP/PS1 mice were normalized in APP/PS1-SMPD3-Nex1 mice. In contrast, elevated levels of IL-1ß, IL-8 and TNFα in APP/PS1 mice were not normalized in APP/PS1-SMPD3-Nex1 mice compared with APP/PS1 mice. Mechanistic studies showed that the size of liquid ordered membrane microdomains was increased in APP/PS1 mice, as were the amounts of APP and BACE1 localized to these microdomains. Pharmacological inhibition of nSMase2 activity with PDDC reduced the size of the liquid ordered membrane microdomains, reduced the localization of APP with BACE1 and reduced the production of Aß1-40 and Aß1-42. Although inhibition of nSMase2 reduced the release and increased the size of EVs, very little Aß was associated with EVs in all conditions tested. We also found that nSMase2 directly protected neurons from the toxic effects of oligomerized Aß and preserved neural network connectivity despite considerable Aß deposition. These data demonstrate that nSMase2 plays a role in the production of Aß by stabilizing the interaction of APP with BACE1 in liquid ordered membrane microdomains, and directly protects neurons from the toxic effects of Aß. The effects of inhibiting nSMase2 on EV biogenesis may be independent from effects on Aß production and neuronal protection.


Assuntos
Doença de Alzheimer , Camundongos , Humanos , Animais , Secretases da Proteína Precursora do Amiloide , Camundongos Transgênicos , Ácido Aspártico Endopeptidases , Peptídeos beta-Amiloides , Neurônios , Precursor de Proteína beta-Amiloide/genética , Presenilina-1 , Modelos Animais de Doenças , Esfingomielina Fosfodiesterase/genética
12.
Sci Adv ; 8(42): eadc9022, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36260680

RESUMO

Wilson disease (WD) is a metabolic disorder caused by inactivation of the copper-transporting ATPase 2 (ATP7B) and copper (Cu) overload in tissues. Excess Cu causes oxidative stress and pathologic changes with poorly understood mechanistic connections. In Atp7b-/- mice with established liver disease, Cu overload activates the stress-sensitive transcription factor Nrf2 (nuclear factor erythroid-derived 2-like 2). Nrf2 targets, especially sulfotransferase 1e1 (Sult1e1), are strongly induced and cause elevation of sulfated sterols, whereas oxysterols are decreased. This sterol misbalance results in inhibition of the liver X receptor (LXR) and up-regulation of LXR targets associated with inflammatory responses. Pharmacological inhibition of Sult1e1 partially reverses oxysterol misbalance and LXR inhibition. Contribution of this pathway to advanced hepatic WD was demonstrated by treating mice with an LXR agonist. Treatment decreased inflammation by reducing expression of proinflammatory molecules, diminished fibrosis by down-regulating the noncanonical transforming growth factor-ß signaling pathway, and improved liver morphology and function. Thus, the identified pathway is an important driver of WD.

13.
Pharmaceutics ; 14(10)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36297501

RESUMO

Alzheimer's disease (AD) is characterized by the progressive accumulation of amyloid-ß and hyperphosphorylated tau (pTau), which can spread throughout the brain via extracellular vesicles (EVs). Membrane ceramide enrichment regulated by the enzyme neutral sphingomyelinase 2 (nSMase2) is a critical component of at least one EV biogenesis pathway. Our group recently identified 2,6-Dimethoxy-4-(5-Phenyl-4-Thiophen-2-yl-1H-Imidazol-2-yl)-Phenol (DPTIP), the most potent (30 nM) and selective inhibitor of nSMase2 reported to date. However, DPTIP exhibits poor oral pharmacokinetics (PK), modest brain penetration, and rapid clearance, limiting its clinical translation. To enhance its PK properties, we conjugated DPTIP to a hydroxyl-PAMAM dendrimer delivery system, creating dendrimer-DPTIP (D-DPTIP). In an acute brain injury model, orally administered D-DPTIP significantly reduced the intra-striatal IL-1ß-induced increase in plasma EVs up to 72 h post-dose, while oral DPTIP had a limited effect. In a mouse tau propagation model, where a mutant hTau (P301L/S320F) containing adeno-associated virus was unilaterally seeded into the hippocampus, oral D-DPTIP (dosed 3× weekly) significantly inhibited brain nSMase2 activity and blocked the spread of pTau to the contralateral hippocampus. These data demonstrate that dendrimer conjugation of DPTIP improves its PK properties, resulting in significant inhibition of EV propagation of pTau in mice. Dendrimer-based delivery of DPTIP has the potential to be an exciting new therapeutic for AD.

14.
J Med Chem ; 65(16): 11111-11125, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-35930706

RESUMO

Extracellular vesicles (EVs) can carry pathological cargo and play an active role in disease progression. Neutral sphingomyelinase-2 (nSMase2) is a critical regulator of EV biogenesis, and its inhibition has shown protective effects in multiple disease states. 2,6-Dimethoxy-4-(5-phenyl-4-thiophen-2-yl-1H-imidazol-2-yl)phenol (DPTIP) is one of the most potent (IC50 = 30 nM) inhibitors of nSMase2 discovered to date. However, DPTIP exhibits poor oral pharmacokinetics (PK), limiting its clinical development. To overcome DPTIP's PK limitations, we synthesized a series of prodrugs by masking its phenolic hydroxyl group. When administered orally, the best prodrug (P18) with a 2',6'-diethyl-1,4'-bipiperidinyl promoiety exhibited >fourfold higher plasma (AUC0-t = 1047 pmol·h/mL) and brain exposures (AUC0-t = 247 pmol·h/g) versus DPTIP and a significant enhancement of DPTIP half-life (2 h vs ∼0.5 h). In a mouse model of acute brain injury, DPTIP released from P18 significantly inhibited IL-1ß-induced EV release into plasma and attenuated nSMase2 activity. These studies report the discovery of a DPTIP prodrug with potential for clinical translation.


Assuntos
Pró-Fármacos , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Esterases , Camundongos , Fenóis/farmacologia , Pró-Fármacos/farmacocinética , Esfingomielina Fosfodiesterase
15.
Neurology ; 99(12): e1251-e1264, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-35851253

RESUMO

BACKGROUND AND OBJECTIVES: To determine whether plasma eicosanoid levels are associated with immune, viral, and cognitive outcomes in people with HIV (PWH). METHODS: We measured 42 eicosanoids in a longitudinal study of 95 PWH and 25 demographically comparable uninfected participants. Routine clinical chemistry, virologic, immune markers, and a neuropsychological test battery assessing 7 cognitive domains were administered to all participants at 2 study visits over an average of 6.5 months. RESULTS: Plasma eicosanoid concentrations were elevated in PWH (n = 95) compared with seronegative controls (n = 25) (100% prediction power at 5% false discovery rate [FDR], α = 0.0531) and were negatively associated with lower current and nadir CD4 lymphocyte counts. Higher levels of eicosanoids were associated with impairments in working memory, verbal fluency, and executive function. Higher plasma viral load was associated with elevated proinflammatory eicosanoids (24% prediction power at 5% FDR and 42.4% prediction power at 10% FDR, α = 0.10). Longitudinal analyses showed that eicosanoid levels were correlated with viral load and with plasma creatinine. Despite associations of eicosanoids with viral loads, elevated plasma eicosanoids were similar in virally suppressed and not fully suppressed PWH. DISCUSSION: These data show that HIV infection is associated with a robust production of eicosanoids that are not substantially reduced by antiretroviral therapy (ART). The sustained elevation of these oxylipins in PWH despite ART may contribute to an accelerated aging phenotype that includes earlier than expected brain and peripheral organ damage.


Assuntos
Infecções por HIV , Biomarcadores , Cognição , Creatinina , Eicosanoides/uso terapêutico , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológico , Humanos , Estudos Longitudinais , Oxilipinas/uso terapêutico , Carga Viral
16.
Viruses ; 14(6)2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35746785

RESUMO

BACKGROUND: HIV infection results in immunometabolic reprogramming. While we are beginning to understand how this metabolic reprogramming regulates the immune response to HIV infection, we do not currently understand the impact of ART on immunometabolism in people with HIV (PWH). METHODS: Serum obtained from HIV-infected (n = 278) and geographically matched HIV seronegative control subjects (n = 300) from Rakai Uganda were used in this study. Serum was obtained before and ~2 years following the initiation of ART from HIV-infected individuals. We conducted metabolomics profiling of the serum and focused our analysis on metabolic substrates and pathways assocaited with immunometabolism. RESULTS: HIV infection was associated with metabolic adaptations that implicated hyperactive glycolysis, enhanced formation of lactate, increased activity of the pentose phosphate pathway (PPP), decreased ß-oxidation of long-chain fatty acids, increased utilization of medium-chain fatty acids, and enhanced amino acid catabolism. Following ART, serum levels of ketone bodies, carnitine, and amino acid metabolism were normalized, however glycolysis, PPP, lactate production, and ß-oxidation of long-chain fatty acids remained abnormal. CONCLUSION: Our findings suggest that HIV infection is associated with an increased immunometabolic demand that is satisfied through the utilization of alternative energetic substrates, including fatty acids and amino acids. ART alone was insufficient to completely restore this metabolic reprogramming to HIV infection, suggesting that a sustained impairment of immunometabolism may contribute to chronic immune activation and comorbid conditions in virally suppressed PWH.


Assuntos
Infecções por HIV , Aminoácidos , Ácidos Graxos/metabolismo , Humanos , Lactatos , Uganda
17.
Brain Behav Immun Health ; 23: 100478, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35734753

RESUMO

Combined antiretroviral therapy ushered an era of survivable HIV infection in which people living with HIV (PLH) conduct normal life activities and enjoy measurably extended lifespans. However, despite viral control, PLH often experience a variety of cognitive, emotional, and physical phenotypes that diminish their quality of life, including cognitive impairment, depression, and sleep disruption. Recently, accumulating evidence has linked persistent CNS immune activation to the overproduction of glutamate and upregulation of glutaminase (GLS) activity, particularly in microglial cells, driving glutamatergic imbalance with neurological consequences. Our lab has developed a brain-penetrant prodrug of the glutamine antagonist 6-diazo-5-oxo-L-norleucine (DON), JHU083, that potently inhibits brain GLS activity in mice following oral administration. To assess the therapeutic potential of JHU083, we infected mice with EcoHIV and characterized their neurobehavioral phenotypes. EcoHIV-infected mice exhibited decreased social interaction, suppressed sucrose preference, disrupted sleep during the early rest period, and increased sleep fragmentation, similar to what has been reported in PLH but not yet observed in murine models. At doses shown to inhibit microglial GLS, JHU083 treatment ameliorated all of the abnormal neurobehavioral phenotypes. To explore potential mechanisms underlying this effect, hippocampal microglia were isolated for RNA sequencing. The dysregulated genes and pathways in EcoHIV-infected hippocampal microglia pointed to disruptions in immune functions of these cells, which were partially restored by JHU083 treatment. These findings suggest that upregulation of microglial GLS may affect immune functions of these cells. Thus, brain-penetrable GLS inhibitors like JHU083 could act as a potential therapeutic modality for both glutamate excitotoxicity and aberrant immune activation in microglia in chronic HIV infection.

18.
Front Mol Biosci ; 9: 859760, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35601829

RESUMO

Clinical and preclinical studies suggest that increases in long-chain ceramides in blood may contribute to the development of depressive-like behavior. However, which factors contribute to these increases and whether the increases are sufficient to induce depressive-like behaviors is unclear. To begin to address this issue, we examined the effects of high fat diet (HFD) and short-term unpredictable (STU) stress on long-chain ceramides in the serum of male and female rats. We found that brief exposure to HFD or unpredictable stress was sufficient to induce selective increases in the serum concentrations of long-chain ceramides, associated with depression in people. Furthermore, combined exposure to HFD and unpredictable stress caused a synergistic increase in C16:0, C16:1, and C18:0 ceramides in both sexes and C18:1 and C24:1 in males. However, the increased peripheral long-chain ceramides were not associated with increases in depressive-like behaviors suggesting that increases in serum long-chain ceramides may not be associated with the development of depressive-like behaviors in rodents.

20.
Neurobiol Dis ; 169: 105734, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35462006

RESUMO

People living with HIV (PLH) have significantly higher rates of cognitive impairment (CI) and major depressive disorder (MDD) versus the general population. The enzyme neutral sphingomyelinase 2 (nSMase2) is involved in the biogenesis of ceramide and extracellular vesicles (EVs), both of which are dysregulated in PLH, CI, and MDD. Here we evaluated EcoHIV-infected mice for behavioral abnormalities relevant to depression and cognition deficits, and assessed the behavioral and biochemical effects of nSMase2 inhibition. Mice were infected with EcoHIV and daily treatment with either vehicle or the nSMase2 inhibitor (R)-(1-(3-(3,4-dimethoxyphenyl)-2,6-dimethylimidazo[1,2-b]pyridazin-8-yl)pyrrolidin-3-yl)-carbamate (PDDC) began 3 weeks post-infection. After 2 weeks of treatment, mice were subjected to behavior tests. EcoHIV-infected mice exhibited behavioral abnormalities relevant to MDD and CI that were reversed by PDDC treatment. EcoHIV infection significantly increased cortical brain nSMase2 activity, resulting in trend changes in sphingomyelin and ceramide levels that were normalized by PDDC treatment. EcoHIV-infected mice also exhibited increased levels of brain-derived EVs and altered microRNA cargo, including miR-183-5p, miR-200c-3p, miR-200b-3p, and miR-429-3p, known to be associated with MDD and CI; all were normalized by PDDC. In conclusion, inhibition of nSMase2 represents a possible new therapeutic strategy for the treatment of HIV-associated CI and MDD.


Assuntos
Transtorno Depressivo Maior , Vesículas Extracelulares , Infecções por HIV , MicroRNAs , Animais , Ceramidas , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológico , Humanos , Camundongos , MicroRNAs/genética , MicroRNAs/farmacologia , Esfingomielina Fosfodiesterase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA