Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Proteome Res ; 18(10): 3681-3688, 2019 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-31476120

RESUMO

Metabolic profiling of biofluids by nuclear magnetic resonance (NMR) spectroscopy serves as an important tool in disease characterization, and its accuracy largely depends on the quality of samples. We aimed to explore possible effects of repeated freeze-thaw cycles (FTCs) on concentrations of lipoprotein parameters in serum and metabolite concentrations in serum and urine samples. After one to five FTCs, serum and urine samples (n= 20) were analyzed by NMR spectroscopy, and 112 lipoprotein parameters, 20 serum metabolites, and 35 urine metabolites were quantified by a commercial analytical platform. Principal component analysis showed no systematic changes related to FTCs, and samples from the same donor were closely clustered, showing a higher between-subject variation than within-subject variation. The coefficients of variation were small (medians of 4.3%, 11.0%, and 4.9%  for lipoprotein parameters and serum and urine metabolites, respectively). Minor, but significant accumulated freeze-thaw effects were observed for 32 lipoprotein parameters and one serum metabolite (acetic acid) when comparing FTC1 to further FTCs. Remaining lipoprotein and metabolite concentrations showed no significant change. In conclusion, five FTCs did not significantly alter the concentrations of urine metabolites and introduced only minor changes to serum lipoprotein parameters and metabolites evaluated by the NMR-based platform.


Assuntos
Líquidos Corporais/metabolismo , Congelamento , Lipoproteínas/sangue , Espectroscopia de Ressonância Magnética/métodos , Variação Biológica Individual , Variação Biológica da População , Humanos , Análise de Componente Principal , Soro/metabolismo , Temperatura , Urina
2.
Nat Commun ; 10(1): 1600, 2019 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-30962452

RESUMO

In the preceding decades, molecular characterization has revolutionized breast cancer (BC) research and therapeutic approaches. Presented herein, an unbiased analysis of breast tumor proteomes, inclusive of 9995 proteins quantified across all tumors, for the first time recapitulates BC subtypes. Additionally, poor-prognosis basal-like and luminal B tumors are further subdivided by immune component infiltration, suggesting the current classification is incomplete. Proteome-based networks distinguish functional protein modules for breast tumor groups, with co-expression of EGFR and MET marking ductal carcinoma in situ regions of normal-like tumors and lending to a more accurate classification of this poorly defined subtype. Genes included within prognostic mRNA panels have significantly higher than average mRNA-protein correlations, and gene copy number alterations are dampened at the protein-level; underscoring the value of proteome quantification for prognostication and phenotypic classification. Furthermore, protein products mapping to non-coding genomic regions are identified; highlighting a potential new class of tumor-specific immunotherapeutic targets.


Assuntos
Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/patologia , Mapas de Interação de Proteínas , Proteoma/metabolismo , Mama/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/imunologia , Carcinoma Ductal de Mama/genética , Carcinoma Ductal de Mama/imunologia , Variações do Número de Cópias de DNA , Conjuntos de Dados como Assunto , Feminino , Perfilação da Expressão Gênica , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Proteogenômica/métodos , Proteoma/genética , Proteoma/imunologia , RNA Mensageiro/metabolismo
3.
Methods Mol Biol ; 1711: 167-189, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29344890

RESUMO

Metabolic profiles reflect biological conditions as a result of biochemical changes within a living system. It is therefore possible to associate metabolic signatures with clinical endpoints of diseases, such as breast cancer. Nuclear magnetic resonance (NMR) spectroscopy is one of the most common techniques used for metabolic profiling, and produces high dimensional datasets from which meaningful biological information can be extracted. Here, we present an overview of data analysis techniques used to achieve this, describing key steps in the procedure. Moreover, examples of clinical endpoints of interest are provided. Although these are specific for breast cancer, the procedures for the analysis of NMR spectra as described here are applicable to any type of cancer and to other diseases.


Assuntos
Neoplasias da Mama/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Metaboloma , Metabolômica/métodos , Mama/metabolismo , Mama/patologia , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/patologia , Análise por Conglomerados , Feminino , Humanos , Análise dos Mínimos Quadrados , Análise Multivariada , Análise de Componente Principal , Prognóstico , Software
4.
Metabolites ; 7(2)2017 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-28509845

RESUMO

Despite progress in early detection and therapeutic strategies, breast cancer remains the second leading cause of cancer-related death among women globally. Due to the heterogeneity and complexity of tumor biology, breast cancer patients with similar diagnosis might have different prognosis and response to treatment. Thus, deeper understanding of individual tumor properties is necessary. Cancer cells must be able to convert nutrients to biomass while maintaining energy production, which requires reprogramming of central metabolic processes in the cells. This phenomenon is increasingly recognized as a potential target for treatment, but also as a source for biomarkers that can be used for prognosis, risk stratification and therapy monitoring. Magnetic resonance (MR) metabolomics is a widely used approach in translational research, aiming to identify clinically relevant metabolic biomarkers or generate novel understanding of the molecular biology in tumors. Ex vivo proton high-resolution magic angle spinning (HR MAS) MR spectroscopy is widely used to study central metabolic processes in a non-destructive manner. Here we review the current status for HR MAS MR spectroscopy findings in breast cancer in relation to glucose, amino acid and choline metabolism.

5.
Cancer Metab ; 4: 12, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27350877

RESUMO

BACKGROUND: The heterogeneous biology of breast cancer leads to high diversity in prognosis and response to treatment, even for patients with similar clinical diagnosis, histology, and stage of disease. Identifying mechanisms contributing to this heterogeneity may reveal new cancer targets or clinically relevant subgroups for treatment stratification. In this study, we have merged metabolite, protein, and gene expression data from breast cancer patients to examine the heterogeneity at a molecular level. METHODS: The study included primary tumor samples from 228 non-treated breast cancer patients. High-resolution magic-angle spinning magnetic resonance spectroscopy (HR MAS MRS) was performed to extract the tumors metabolic profiles further used for hierarchical cluster analysis resulting in three significantly different metabolic clusters (Mc1, Mc2, and Mc3). The clusters were further combined with gene and protein expression data. RESULTS: Our result revealed distinct differences in the metabolic profile of the three metabolic clusters. Among the most interesting differences, Mc1 had the highest levels of glycerophosphocholine (GPC) and phosphocholine (PCho), Mc2 had the highest levels of glucose, and Mc3 had the highest levels of lactate and alanine. Integrated pathway analysis of metabolite and gene expression data uncovered differences in glycolysis/gluconeogenesis and glycerophospholipid metabolism between the clusters. All three clusters had significant differences in the distribution of protein subtypes classified by the expression of breast cancer-related proteins. Genes related to collagens and extracellular matrix were downregulated in Mc1 and consequently upregulated in Mc2 and Mc3, underpinning the differences in protein subtypes within the metabolic clusters. Genetic subtypes were evenly distributed among the three metabolic clusters and could therefore contribute to additional explanation of breast cancer heterogeneity. CONCLUSIONS: Three naturally occurring metabolic clusters of breast cancer were detected among primary tumors from non-treated breast cancer patients. The clusters expressed differences in breast cancer-related protein as well as genes related to extracellular matrix and metabolic pathways known to be aberrant in cancer. Analyses of metabolic activity combined with gene and protein expression provide new information about the heterogeneity of breast tumors and, importantly, the metabolic differences infer that the clusters may be susceptible to different metabolically targeted drugs.

6.
Front Oncol ; 6: 17, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26858940

RESUMO

INTRODUCTION: Metabolic profiling of intact tumor tissue by high-resolution magic angle spinning (HR MAS) MR spectroscopy (MRS) provides important biological information possibly useful for clinical diagnosis and development of novel treatment strategies. However, generation of high-quality data requires that sample handling from surgical resection until analysis is performed using systematically validated procedures. In this study, we investigated the effect of postsurgical freezing delay time on global metabolic profiles and stability of individual metabolites in intact tumor tissue. MATERIALS AND METHODS: Tumor tissue samples collected from two patient-derived breast cancer xenograft models (n = 3 for each model) were divided into pieces that were snap-frozen in liquid nitrogen at 0, 15, 30, 60, 90, and 120 min after surgical removal. In addition, one sample was analyzed immediately, representing the metabolic profile of fresh tissue exposed neither to liquid nitrogen nor to room temperature. We also evaluated the metabolic effect of prolonged spinning during the HR MAS experiments in biopsies from breast cancer patients (n = 14). All samples were analyzed by proton HR MAS MRS on a Bruker Avance DRX600 spectrometer, and changes in metabolic profiles were evaluated using multivariate analysis and linear mixed modeling. RESULTS: Multivariate analysis showed that the metabolic differences between the two breast cancer models were more prominent than variation caused by freezing delay time. No significant changes in levels of individual metabolites were observed in samples frozen within 30 min of resection. After this time point, levels of choline increased, whereas ascorbate, creatine, and glutathione (GS) levels decreased. Freezing had a significant effect on several metabolites but is an essential procedure for research and biobank purposes. Furthermore, four metabolites (glucose, glycine, glycerophosphocholine, and choline) were affected by prolonged HR MAS experiment time possibly caused by physical release of metabolites caused by spinning or due to structural degradation processes. CONCLUSION: The MR metabolic profiles of tumor samples are reproducible and robust to variation in postsurgical freezing delay up to 30 min.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA