Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Infect Immun ; 92(6): e0008324, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38712951

RESUMO

Streptococcus pyogenes [group A streptococcus (GAS)] is a human pathogen capable of infecting diverse tissues. To successfully infect these sites, GAS must detect available nutrients and adapt accordingly. The phosphoenolpyruvate transferase system (PTS) mediates carbohydrate uptake and metabolic gene regulation to adapt to the nutritional environment. Regulation by the PTS can occur through phosphorylation of transcriptional regulators at conserved PTS-regulatory domains (PRDs). GAS has several PRD-containing stand-alone regulators with regulons encoding both metabolic genes and virulence factors [PRD-containing virulence regulators (PCVRs)]. One is RofA, which regulates the expression of virulence genes in multiple GAS serotypes. It was hypothesized that RofA is phosphorylated by the PTS in response to carbohydrate levels to coordinate virulence gene expression. In this study, the RofA regulon of M1T1 strain 5448 was determined using RNA sequencing. Two operons were consistently differentially expressed across growth in the absence of RofA; the pilus operon was downregulated, and the capsule operon was upregulated. This correlated with increased capsule production and decreased adherence to keratinocytes. Purified RofA-His was phosphorylated in vitro by PTS proteins EI and HPr, and phosphorylated RofA-FLAG was detected in vivo when GAS was grown in low-glucose C medium. Phosphorylated RofA was not observed when C medium was supplemented 10-fold with glucose. Mutations of select histidine residues within the putative PRDs contributed to the in vivo phosphorylation of RofA, although phosphorylation of RofA was still observed, suggesting other phosphorylation sites exist in the protein. Together, these findings support the hypothesis that RofA is a PCVR that may couple sugar metabolism with virulence regulation.


Assuntos
Proteínas de Bactérias , Regulação Bacteriana da Expressão Gênica , Streptococcus pyogenes , Fatores de Virulência , Streptococcus pyogenes/patogenicidade , Streptococcus pyogenes/genética , Streptococcus pyogenes/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Virulência , Fosforilação , Humanos , Regulon , Óperon , Infecções Estreptocócicas/microbiologia , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/metabolismo , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/genética , Queratinócitos/microbiologia
2.
Mol Microbiol ; 88(6): 1176-93, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23651410

RESUMO

The ability of a bacterial pathogen to monitor available carbon sources in host tissues provides a clear fitness advantage. In the group A streptococcus (GAS), the virulence regulator Mga contains homology to phosphotransferase system (PTS) regulatory domains (PRDs) found in sugar operon regulators. Here we show that Mga was phosphorylated in vitro by the PTS components EI/HPr at conserved PRD histidines. A ΔptsI (EI-deficient) GAS mutant exhibited decreased Mga activity. However, PTS-mediated phosphorylation inhibited Mga-dependent transcription of emm in vitro. Using alanine (unphosphorylated) and aspartate (phosphomimetic) mutations of PRD histidines, we establish that a doubly phosphorylated PRD1 phosphomimetic (D/DMga4) is completely inactive in vivo, shutting down expression of the Mga regulon. Although D/DMga4 is still able to bind DNA in vitro, homo-multimerization of Mga is disrupted and the protein is unable to activate transcription. PTS-mediated regulation of Mga activity appears to be important for pathogenesis, as bacteria expressing either non-phosphorylated (A/A) or phosphomimetic (D/D) PRD1 Mga mutants were attenuated in a model of GAS invasive skin disease. Thus, PTS-mediated phosphorylation of Mga may allow the bacteria to modulate virulence gene expression in response to carbohydrate status. Furthermore, PRD-containing virulence regulators (PCVRs) appear to be widespread in Gram-positive pathogens.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/metabolismo , Regulon , Streptococcus pyogenes/genética , Streptococcus pyogenes/metabolismo , Animais , DNA Bacteriano/metabolismo , Modelos Animais de Doenças , Camundongos , Fosforilação , Ligação Proteica , Multimerização Proteica , Dermatopatias Bacterianas/microbiologia , Dermatopatias Bacterianas/patologia , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/patologia , Streptococcus pyogenes/patogenicidade , Transcrição Gênica , Virulência
3.
J Bacteriol ; 194(18): 4904-19, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22773785

RESUMO

The Mga regulator of Streptococcus pyogenes directly activates the transcription of a core regulon that encodes virulence factors such as M protein (emm), C5a peptidase (scpA), and streptococcal inhibitor of complement (sic) by directly binding to a 45-bp binding site as determined by an electrophoretic mobility shift assay (EMSA) and DNase I protection. However, by comparing the nucleotide sequences of all established Mga binding sites, we found that they exhibit only 13.4% identity with no discernible symmetry. To determine the core nucleotides involved in functional Mga-DNA interactions, the M1T1 Pemm1 binding site was altered and screened for nucleotides important for DNA binding in vitro and for transcriptional activation using a plasmid-based luciferase reporter in vivo. Following this analysis, 34 nucleotides within the Pemm1 binding site that had an effect on Mga binding, Mga-dependent transcriptional activation, or both were identified. Of these critical nucleotides, guanines and cytosines within the major groove were disproportionately identified clustered at the 5' and 3' ends of the binding site and with runs of nonessential adenines between the critical nucleotides. On the basis of these results, a Pemm1 minimal binding site of 35 bp bound Mga at a level comparable to the level of binding of the larger 45-bp site. Comparison of Pemm with directed mutagenesis performed in the M1T1 Mga-regulated PscpA and Psic promoters, as well as methylation interference analysis of PscpA, establish that Mga binds to DNA in a promoter-specific manner.


Assuntos
Proteínas de Bactérias/metabolismo , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Regiões Promotoras Genéticas , Streptococcus pyogenes/patogenicidade , Fusão Gênica Artificial , Sítios de Ligação , Análise Mutacional de DNA , Genes Reporter , Luciferases/análise , Luciferases/genética , Plasmídeos , Ligação Proteica , Streptococcus pyogenes/metabolismo , Transcrição Gênica , Fatores de Virulência/biossíntese
4.
Mol Microbiol ; 83(5): 953-67, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22468267

RESUMO

The Group A Streptococcus (GAS) is a strict human pathogen that causes a broad spectrum of illnesses. One of the key regulators of virulence in GAS is the transcriptional activator Mga, which co-ordinates the early stages of infection. Although the targets of Mga have been well characterized, basic biochemical analyses have been limited due to difficulties in obtaining purified protein. In this study, high-level purification of soluble Mga was achieved, enabling the first detailed characterization of the protein. Fluorescence titrations coupled with filter-binding assays indicate that Mga binds cognate DNA with nanomolar affinity. Gel filtration analyses, analytical ultracentrifugation and co-immunoprecipitation experiments demonstrate that Mga forms oligomers in solution.Moreover, the ability of the protein to oligomerize in solution was found to correlate with transcriptional activation; DNA binding appears to be necessary but insufficient for full activity. Truncation analyses reveal that the uncharacterized C-terminal region of Mga, possessing similarity to phosphotransferase system EIIB proteins, plays a critical role in oligomerization and in vivo activity. Mga from a divergent serotype was found to behave similarly, suggesting that this study describes a general mechanism for Mga regulation of target virulence genes within GAS and provides insight into related regulators in other Gram-positive pathogens.


Assuntos
Proteínas de Bactérias/metabolismo , Streptococcus pyogenes/genética , Fatores de Transcrição/metabolismo , Ativação Transcricional , Proteínas de Bactérias/genética , DNA Bacteriano/metabolismo , Regulação Bacteriana da Expressão Gênica , Multimerização Proteica , Streptococcus pyogenes/patogenicidade , Fatores de Transcrição/genética , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA