Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Comput Biol Med ; 142: 105219, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35026572

RESUMO

With the digitization of histopathology, machine learning algorithms have been developed to help pathologists. Color variation in histopathology images degrades the performance of these algorithms. Many models have been proposed to resolve the impact of color variation and transfer histopathology images to a single stain style. Major shortcomings include manual feature extraction, bias on a reference image, being limited to one style to one style transfer, dependence on style labels for source and target domains, and information loss. We propose two models, considering these shortcomings. Our main novelty is using Generative Adversarial Networks (GANs) along with feature disentanglement. The models extract color-related and structural features with neural networks; thus, features are not hand-crafted. Extracting features helps our models do many-to-one stain transformations and require only target-style labels. Our models also do not require a reference image by exploiting GAN. Our first model has one network per stain style transformation, while the second model uses only one network for many-to-many stain style transformations. We compare our models with six state-of-the-art models on the Mitosis-Atypia Dataset. Both proposed models achieved good results, but our second model outperforms other models based on the Histogram Intersection Score (HIS). Our proposed models were applied to three datasets to test their performance. The efficacy of our models was also evaluated on a classification task. Our second model obtained the best results in all the experiments with HIS of 0.88, 0.85, 0.75 for L-channel, a-channel, and b-channel, using the Mitosis-Atypia Dataset and accuracy of 90.3% for classification.


Assuntos
Corantes , Processamento de Imagem Assistida por Computador , Algoritmos , Processamento de Imagem Assistida por Computador/métodos , Aprendizado de Máquina , Redes Neurais de Computação
2.
IEEE Trans Neural Netw Learn Syst ; 33(9): 4466-4478, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33657001

RESUMO

Learning in nonstationary environments is one of the biggest challenges in machine learning. Nonstationarity can be caused by either task drift, i.e., the drift in the conditional distribution of labels given the input data, or the domain drift, i.e., the drift in the marginal distribution of the input data. This article aims to tackle this challenge with a modularized two-stream continual learning (CL) system, where the model is required to learn new tasks from a support stream and adapted to new domains in the query stream while maintaining previously learned knowledge. To deal with both drifts within and across the two streams, we propose a variational domain-agnostic feature replay-based approach that decouples the system into three modules: an inference module that filters the input data from the two streams into domain-agnostic representations, a generative module that facilitates the high-level knowledge transfer, and a solver module that applies the filtered and transferable knowledge to solve the queries. We demonstrate the effectiveness of our proposed approach in addressing the two fundamental scenarios and complex scenarios in two-stream CL.

3.
Med Image Anal ; 72: 102106, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34153625

RESUMO

Synthetic medical image generation has a huge potential for improving healthcare through many applications, from data augmentation for training machine learning systems to preserving patient privacy. Conditional Adversarial Generative Networks (cGANs) use a conditioning factor to generate images and have shown great success in recent years. Intuitively, the information in an image can be divided into two parts: 1) content which is presented through the conditioning vector and 2) style which is the undiscovered information missing from the conditioning vector. Current practices in using cGANs for medical image generation, only use a single variable for image generation (i.e., content) and therefore, do not provide much flexibility nor control over the generated image. In this work we propose DRAI-a dual adversarial inference framework with augmented disentanglement constraints-to learn from the image itself, disentangled representations of style and content, and use this information to impose control over the generation process. In this framework, style is learned in a fully unsupervised manner, while content is learned through both supervised learning (using the conditioning vector) and unsupervised learning (with the inference mechanism). We undergo two novel regularization steps to ensure content-style disentanglement. First, we minimize the shared information between content and style by introducing a novel application of the gradient reverse layer (GRL); second, we introduce a self-supervised regularization method to further separate information in the content and style variables. For evaluation, we consider two types of baselines: single latent variable models that infer a single variable, and double latent variable models that infer two variables (style and content). We conduct extensive qualitative and quantitative assessments on two publicly available medical imaging datasets (LIDC and HAM10000) and test for conditional image generation, image retrieval and style-content disentanglement. We show that in general, two latent variable models achieve better performance and give more control over the generated image. We also show that our proposed model (DRAI) achieves the best disentanglement score and has the best overall performance.


Assuntos
Processamento de Imagem Assistida por Computador , Aprendizado de Máquina , Humanos
4.
Med Image Anal ; 35: 18-31, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27310171

RESUMO

In this paper, we present a fully automatic brain tumor segmentation method based on Deep Neural Networks (DNNs). The proposed networks are tailored to glioblastomas (both low and high grade) pictured in MR images. By their very nature, these tumors can appear anywhere in the brain and have almost any kind of shape, size, and contrast. These reasons motivate our exploration of a machine learning solution that exploits a flexible, high capacity DNN while being extremely efficient. Here, we give a description of different model choices that we've found to be necessary for obtaining competitive performance. We explore in particular different architectures based on Convolutional Neural Networks (CNN), i.e. DNNs specifically adapted to image data. We present a novel CNN architecture which differs from those traditionally used in computer vision. Our CNN exploits both local features as well as more global contextual features simultaneously. Also, different from most traditional uses of CNNs, our networks use a final layer that is a convolutional implementation of a fully connected layer which allows a 40 fold speed up. We also describe a 2-phase training procedure that allows us to tackle difficulties related to the imbalance of tumor labels. Finally, we explore a cascade architecture in which the output of a basic CNN is treated as an additional source of information for a subsequent CNN. Results reported on the 2013 BRATS test data-set reveal that our architecture improves over the currently published state-of-the-art while being over 30 times faster.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Glioblastoma/diagnóstico por imagem , Aprendizado de Máquina , Imageamento por Ressonância Magnética/métodos , Redes Neurais de Computação , Humanos , Processamento de Imagem Assistida por Computador/métodos
5.
Med Image Anal ; 35: 250-269, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27475911

RESUMO

Ischemic stroke is the most common cerebrovascular disease, and its diagnosis, treatment, and study relies on non-invasive imaging. Algorithms for stroke lesion segmentation from magnetic resonance imaging (MRI) volumes are intensely researched, but the reported results are largely incomparable due to different datasets and evaluation schemes. We approached this urgent problem of comparability with the Ischemic Stroke Lesion Segmentation (ISLES) challenge organized in conjunction with the MICCAI 2015 conference. In this paper we propose a common evaluation framework, describe the publicly available datasets, and present the results of the two sub-challenges: Sub-Acute Stroke Lesion Segmentation (SISS) and Stroke Perfusion Estimation (SPES). A total of 16 research groups participated with a wide range of state-of-the-art automatic segmentation algorithms. A thorough analysis of the obtained data enables a critical evaluation of the current state-of-the-art, recommendations for further developments, and the identification of remaining challenges. The segmentation of acute perfusion lesions addressed in SPES was found to be feasible. However, algorithms applied to sub-acute lesion segmentation in SISS still lack accuracy. Overall, no algorithmic characteristic of any method was found to perform superior to the others. Instead, the characteristics of stroke lesion appearances, their evolution, and the observed challenges should be studied in detail. The annotated ISLES image datasets continue to be publicly available through an online evaluation system to serve as an ongoing benchmarking resource (www.isles-challenge.org).


Assuntos
Algoritmos , Benchmarking , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Acidente Vascular Cerebral/diagnóstico por imagem , Humanos
6.
Int J Comput Assist Radiol Surg ; 11(5): 777-88, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26530300

RESUMO

PURPOSE: In this paper, we investigate a framework for interactive brain tumor segmentation which, at its core, treats the problem of interactive brain tumor segmentation as a machine learning problem. METHODS: This method has an advantage over typical machine learning methods for this task where generalization is made across brains. The problem with these methods is that they need to deal with intensity bias correction and other MRI-specific noise. In this paper, we avoid these issues by approaching the problem as one of within brain generalization. Specifically, we propose a semi-automatic method that segments a brain tumor by training and generalizing within that brain only, based on some minimum user interaction. CONCLUSION: We investigate how adding spatial feature coordinates (i.e., i, j, k) to the intensity features can significantly improve the performance of different classification methods such as SVM, kNN and random forests. This would only be possible within an interactive framework. We also investigate the use of a more appropriate kernel and the adaptation of hyper-parameters specifically for each brain. RESULTS: As a result of these experiments, we obtain an interactive method whose results reported on the MICCAI-BRATS 2013 dataset are the second most accurate compared to published methods, while using significantly less memory and processing power than most state-of-the-art methods.


Assuntos
Algoritmos , Neoplasias Encefálicas/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Humanos , Aprendizado de Máquina , Imageamento por Ressonância Magnética/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA