Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
BMC Syst Biol ; 11(1): 1, 2017 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-28061857

RESUMO

BACKGROUND: Enteric Escherichia coli survives the highly acidic environment of the stomach through multiple acid resistance (AR) mechanisms. The most effective system, AR2, decarboxylates externally-derived glutamate to remove cytoplasmic protons and excrete GABA. The first described system, AR1, does not require an external amino acid. Its mechanism has not been determined. The regulation of the multiple AR systems and their coordination with broader cellular metabolism has not been fully explored. RESULTS: We utilized a combination of ChIP-Seq and gene expression analysis to experimentally map the regulatory interactions of four TFs: nac, ntrC, ompR, and csiR. Our data identified all previously in vivo confirmed direct interactions and revealed several others previously inferred from gene expression data. Our data demonstrate that nac and csiR directly modulate AR, and leads to a regulatory network model in which all four TFs participate in coordinating acid resistance, glutamate metabolism, and nitrogen metabolism. This model predicts a novel mechanism for AR1 by which the decarboxylation enzymes of AR2 are used with internally derived glutamate. This hypothesis makes several testable predictions that we confirmed experimentally. CONCLUSIONS: Our data suggest that the regulatory network underlying AR is complex and deeply interconnected with the regulation of GABA and glutamate metabolism, nitrogen metabolism. These connections underlie and experimentally validated model of AR1 in which the decarboxylation enzymes of AR2 are used with internally derived glutamate.


Assuntos
Escherichia coli/fisiologia , Mapeamento de Interação de Proteínas , Biologia Computacional , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Perfilação da Expressão Gênica , Concentração de Íons de Hidrogênio , Fenótipo
2.
Curr Opin Biotechnol ; 24(4): 620-6, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23465756

RESUMO

Increasing demands from nanotechnology require increasingly more rigorous methods to control nanoparticle traits such as assembly, size, morphology, monodispersity, stability, and reactivity. Viruses are a compelling starting point for engineering nanoparticles, as eons of natural biological evolution have instilled diverse and desirable traits. The next step is to reengineer these viruses into something functional and useful. These reengineered particles, or virus-based nanoparticles (VNPs), are the foundation for many promising new technologies in drug delivery, targeted delivery, vaccines, imaging, and biocatalysis. To achieve these end goals, VNPs must often be manipulated genetically and post-translationally. We review prevailing strategies of genetic and noncovalent functionalization and focus on the covalent modifications using natural and unnatural amino acid residues.


Assuntos
Bioengenharia , Nanopartículas/química , Nanotecnologia , Aminoácidos/química , Proteínas Virais/química , Vírus/química , Vírus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA