Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Stem Cell Rev Rep ; 19(6): 2013-2023, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37249733

RESUMO

Cholangiocarcinoma is an aggressive type of liver cancer with few effective treatment options. Therefore, there is great need to better understand the biology of this malignancy to further development of novel treatment options. Cancer stem cells (CSCs) are thought to the underlying reason for cancer initiation, metastasis, and relapse. However, due to their elusive character and differences in identification among different types of cancer, it remains a challenge to study such cells. Additionally, characterization of the tumor microenvironment such as interactions with immune cells remain largely unknown. Here, we employ a fluorescent reporter system to track and isolate stem-like cancer cells of cholangiocarcinoma cell lines. Following verification of a stem-like signature (upregulated expression of stemness markers, resistance to chemotherapy, increased spheroid formation, and tumorigenesis capabilities despite inoculation of a small number of cells), we analyzed the interaction of these cells with macrophages via direct and indirect coculture assays. We noted direct coculturing increased stemness among CSC populations and induced both M1 (CD80 and HLA-DR) and M2 (CD163) tumor associated macrophage polarization. These studies suggest that there is a bi-directional crosstalk between macrophages and CSCs that promotes stemness renewal and tumor associated macrophage polarization.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Humanos , Linhagem Celular Tumoral , Recidiva Local de Neoplasia/patologia , Macrófagos/metabolismo , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patologia , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/metabolismo , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Intra-Hepáticos/patologia , Células-Tronco Neoplásicas/metabolismo , Microambiente Tumoral
2.
Cancers (Basel) ; 14(3)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35158792

RESUMO

NK effector cells expressing a CAR construct may be used to target T-lineage markers. In this work, we compared the activity of a NK-specific CAR-NK and a CAR-T framework when expressed on NK effector cells to target CD3 and CD5 in T-cell malignancies. Our results show that CD3-CAR-T is more active than CD5-CAR-T to eliminate malignant T cells in vitro, however, CD3-CAR-T were less efficient to eliminate tumor cells in vivo, while CD5-CAR-T had antitumor activity in a diffuse xenograft model. Lack of in vivo efficacy correlated with downregulation of CD3 levels in target T cells after coculture with CD3-CAR effector cells. The CAR-NK framework greatly improved the efficacy of CARs leading to increased degranulation, cytokine secretion and elimination of the tumor xenograft by CD5-CAR-NK effector cells. Finally, all CAR constructs were similarly effective to eliminate malignant T cells in vitro. Our results show that the NK-CAR framework improves the activity of CARs in NK cells and that CD5 would be a better target than CD3 for T-cell malignancies, as dynamic downregulation of target expression may affect in vivo efficacy.

3.
J Leukoc Biol ; 111(4): 805-816, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34270823

RESUMO

GATA2 is a transcription factor critical for hematopoiesis. Germline mutations in GATA binding protein 2 (GATA2) led to haploinsufficiency, severe cytopenias of multiple cell lineages, susceptibility to infections and strong propensity to develop myelodysplastic syndrome, and acute myeloid leukemia. Mechanisms of progressive cytopenias remain unclear. MicroRNA (miRNA) represents a unique mechanism of post-transcriptional gene regulation. In this study, miRNA profiles were evaluated and eight miRNAs were found to be differentially expressed (≥2-fold, P ≤ 0.05) in patient-derived cell lines (N = 13) in comparison to controls (N = 10). miR-9, miR-181a-2-3p, miR-181c, miR-181c-3p, miR-486-3p, and miR-582 showed increased expression, whereas miR-223 and miR-424-3p showed decreased expression. Cell death assays indicated that miR-181c potently induces cell death in lymphoid (Ly-8 and SP-53) and myeloid (HL-60) cell lines. miR-181c was predicted to target myeloid cell leukemia (MCL)1, which was confirmed by transfection assays, resulting in significantly reduced MCL1 mRNA and decreased live cell numbers. Bone marrow analysis of 34 GATA2 patients showed significantly decreased cellularity, CD34-positive cells, monocytes, dendritic cells, NK cells, B cells, and B cell precursors in comparison to healthy controls (N = 29; P < 0.001 for each), which was accompanied by decreased levels of MCL1 (P < 0.05). GATA2 expression led to significant repression of miR-181c expression in transfection experiments. Conversely, knockdown of GATA2 led to increased miR-181c expression. These findings indicate that miR-181c expression is increased and MCL1 levels decreased in GATA2 deficiency cells, and that GATA2 represses miR-181c transcription. Increased miR-181c may contribute to elevated cell death and cytopenia in GATA2 deficiency potentially through down-regulation of MCL1.


Assuntos
Deficiência de GATA2 , MicroRNAs , Proteína de Sequência 1 de Leucemia de Células Mieloides , Sobrevivência Celular/genética , Fator de Transcrição GATA2/genética , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética
4.
Nat Commun ; 10(1): 2157, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31089138

RESUMO

T cell senescence and exhaustion are major barriers to successful cancer immunotherapy. Here we show that miR-155 increases CD8+ T cell antitumor function by restraining T cell senescence and functional exhaustion through epigenetic silencing of drivers of terminal differentiation. miR-155 enhances Polycomb repressor complex 2 (PRC2) activity indirectly by promoting the expression of the PRC2-associated factor Phf19 through downregulation of the Akt inhibitor, Ship1. Phf19 orchestrates a transcriptional program extensively shared with miR-155 to restrain T cell senescence and sustain CD8+ T cell antitumor responses. These effects rely on Phf19 histone-binding capacity, which is critical for the recruitment of PRC2 to the target chromatin. These findings establish the miR-155-Phf19-PRC2 as a pivotal axis regulating CD8+ T cell differentiation, thereby paving new ways for potentiating cancer immunotherapy through epigenetic reprogramming of CD8+ T cell fate.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Melanoma Experimental/imunologia , MicroRNAs/metabolismo , Neoplasias Cutâneas/imunologia , Fatores de Transcrição/metabolismo , Transferência Adotiva/métodos , Animais , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/transplante , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Senescência Celular/genética , Senescência Celular/imunologia , Epigênese Genética/imunologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Melanoma Experimental/genética , Melanoma Experimental/terapia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/genética , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/metabolismo , Complexo Repressor Polycomb 2/imunologia , Complexo Repressor Polycomb 2/metabolismo , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/terapia , Fatores de Transcrição/genética , Fatores de Transcrição/imunologia
5.
Front Immunol ; 10: 355, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30886618

RESUMO

Naïve and memory T cells co-exist in the peripheral T cell pool, but the cellular mechanisms that maintain the balance and homeostasis of these two populations remain mostly unclear. To address this question, here, we assessed homeostatic proliferation and repopulation kinetics of adoptively transferred naïve and memory T cells in lymphopenic host mice. We identified distinct kinetics of proliferation and tissue-distribution between naïve and memory donor T cells, which resulted in the occupancy of the peripheral T cell pool by mostly naïve-origin T cells in short term (<1 week), but, in a dramatic reversal, by mostly memory-origin T cells in long term (>4 weeks). To explain this finding, we assessed utilization of the homeostatic cytokines IL-7 and IL-15 by naïve and memory T cells. We found different efficiencies of IL-7 signaling between naïve and memory T cells, where memory T cells expressed larger amounts of IL-7Rα but were significantly less potent in activation of STAT5 that is downstream of IL-7 signaling. Nonetheless, memory T cells were superior in long-term repopulation of the peripheral T cell pool, presumably, because they preferentially migrated into non-lymphoid tissues upon adoptive transfer and additionally utilized tissue IL-15 for rapid expansion. Consequently, co-utilization of IL-7 and IL-15 provides memory T cells a long-term survival advantage. We consider this mechanism important, as it permits the memory T cell population to be maintained in face of constant influx of naïve T cells to the peripheral T cell pool and under competing conditions for survival cytokines.


Assuntos
Citocinas/imunologia , Memória Imunológica/imunologia , Transferência Adotiva/métodos , Animais , Sobrevivência Celular/imunologia , Homeostase/imunologia , Interleucina-15/imunologia , Cinética , Ativação Linfocitária/imunologia , Linfopenia/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Interleucina-7/imunologia , Fator de Transcrição STAT5/imunologia , Transdução de Sinais/imunologia
6.
Nat Immunol ; 20(3): 337-349, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30778251

RESUMO

Stem cells are maintained by transcriptional programs that promote self-renewal and repress differentiation. Here, we found that the transcription factor c-Myb was essential for generating and maintaining stem cells in the CD8+ T cell memory compartment. Following viral infection, CD8+ T cells lacking Myb underwent terminal differentiation and generated fewer stem cell-like central memory cells than did Myb-sufficient T cells. c-Myb acted both as a transcriptional activator of Tcf7 (which encodes the transcription factor Tcf1) to enhance memory development and as a repressor of Zeb2 (which encodes the transcription factor Zeb2) to hinder effector differentiation. Domain-mutagenesis experiments revealed that the transactivation domain of c-Myb was necessary for restraining differentiation, whereas its negative regulatory domain was critical for cell survival. Myb overexpression enhanced CD8+ T cell memory formation, polyfunctionality and recall responses that promoted curative antitumor immunity after adoptive transfer. These findings identify c-Myb as a pivotal regulator of CD8+ T cell stemness and highlight its therapeutic potential.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Memória Imunológica/imunologia , Neoplasias Experimentais/imunologia , Proteínas Proto-Oncogênicas c-myb/imunologia , Células-Tronco/imunologia , Animais , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/virologia , Diferenciação Celular/imunologia , Linhagem Celular Tumoral , Células HEK293 , Humanos , Memória Imunológica/genética , Coriomeningite Linfocítica/imunologia , Coriomeningite Linfocítica/metabolismo , Coriomeningite Linfocítica/virologia , Vírus da Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/virologia , Proteínas Proto-Oncogênicas c-myb/genética , Proteínas Proto-Oncogênicas c-myb/metabolismo , Células-Tronco/metabolismo , Células-Tronco/virologia , Fator 1 de Transcrição de Linfócitos T/genética , Fator 1 de Transcrição de Linfócitos T/imunologia , Fator 1 de Transcrição de Linfócitos T/metabolismo
7.
Mol Cancer Ther ; 17(9): 2034-2048, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29959199

RESUMO

Cancer stem-like cells are hypothesized to be the major tumor-initiating cell population of human cutaneous squamous cell carcinoma (cSCC), but the landscape of molecular alterations underpinning their signaling and cellular phenotypes as drug targets remains undefined. In this study, we developed an experimental pipeline to isolate a highly enriched CD133+CD31-CD45-CD61-CD24- (CD133+) cell population from primary cSCC specimens by flow cytometry. The CD133+ cells show enhanced stem-like phenotypes, which were verified by spheroid and colony formation in vitro and tumor generation in vivo Gene expression profiling of CD133+/- cells was compared and validated, and differentially expressed gene signatures and top pathways were identified. CD133+ cells expressed a repertoire of stemness and cancer-related genes, including NOTCH and NOTCH1-mediated NF-κB pathway signaling. Other cancer-related genes from WNT, growth factor receptors, PI3K/mTOR, STAT pathways, and chromatin modifiers were also identified. Pharmacologic and genetic targeting of NOTCH1, IKKα, RELA, and RELB modulated NF-κB transactivation, the CD133+ population, and cellular and stemness phenotypes. Immunofluorescent staining confirmed colocalization of CD133+ and IKKα expression in SCC tumor specimens. Our functional, genetic, and pharmacologic studies uncovered a novel linkage between NOTCH1, IKKα, and NF-κB pathway activation in maintaining the CD133+ stem SCC phenotypes. Studies investigating markers of activation and modulators of NOTCH, IKK/NF-κB, and other pathways regulating these cancer stem gene signatures could further accelerate the development of effective therapeutic strategies to treat cSCC recurrence and metastasis. Mol Cancer Ther; 17(9); 2034-48. ©2018 AACR.


Assuntos
Carcinoma de Células Escamosas/genética , Quinase I-kappa B/genética , NF-kappa B/genética , Células-Tronco Neoplásicas/metabolismo , Receptor Notch1/genética , Neoplasias Cutâneas/genética , Antígeno AC133/genética , Antígeno AC133/metabolismo , Animais , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Diaminas/farmacologia , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Quinase I-kappa B/metabolismo , Masculino , Camundongos Nus , NF-kappa B/metabolismo , Receptor Notch1/antagonistas & inibidores , Receptor Notch1/metabolismo , Transdução de Sinais/genética , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Tiazóis/farmacologia , Transplante Heterólogo
8.
Eur J Immunol ; 46(7): 1669-80, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27129922

RESUMO

IL-7 is essential for T-cell survival but its availability is limited in vivo. Consequently, all peripheral T cells, including recent thymic emigrants (RTEs) are constantly competing for IL-7 to survive. RTEs are required to replenish TCR diversity and rejuvenate the peripheral T-cell pool. However, it remains unknown how RTEs successfully compete with resident mature T cells for IL-7. Moreover, RTEs express low levels of IL-7 receptors, presumably rendering them even less competitive. Here, we show that, surprisingly, RTEs are more responsive to IL-7 than mature naïve T cells as demonstrated by markedly increased STAT5 phosphorylation upon IL-7 stimulation. Nonetheless, adoptive transfer of RTE cells into lymphopenic host mice resulted in slower IL-7-induced homeostatic proliferation and diminished expansion compared to naïve donor T cells. Mechanistically, we found that IL-7 signaling in RTEs preferentially upregulated expression of Bcl-2, which is anti-apoptotic but also anti-proliferative. In contrast, naïve T cells showed diminished Bcl-2 induction but greater proliferative response to IL-7. Collectively, these data indicate that IL-7 responsiveness in RTE is designed to maximize survival at the expense of reduced proliferation, consistent with RTE serving as a subpopulation of T cells rich in diversity but not in frequency.


Assuntos
Homeostase , Interleucina-7/metabolismo , Transdução de Sinais , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Timo/imunologia , Timo/metabolismo , Animais , Apoptose/genética , Apoptose/imunologia , Movimento Celular/imunologia , Proliferação de Células , Sobrevivência Celular/genética , Sobrevivência Celular/imunologia , Proteínas de Ligação a DNA/deficiência , Imunofenotipagem , Ativação Linfocitária/imunologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Receptores de Interleucina-7/metabolismo
9.
Cancer Immunol Res ; 3(5): 557-66, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25637366

RESUMO

Immune-stimulatory mAbs are currently being evaluated as antitumor agents. Although overall toxicity from these agents appears to be moderate, liver toxicities have been reported and are not completely understood. We studied the effect of systemic CD40 antibody treatment on myeloid cells in the spleen and liver. Naïve and tumor-bearing mice were treated systemically with agonistic anti-CD40 antibody. Immune cell subsets in the liver and spleen, serum transaminases, and liver histologies were analyzed after antibody administration. Nox2(-/-), Cd40(-/-), and bone marrow chimeric mice were used to study the mechanism by which agonistic anti-CD40 mediates its effects in vivo. Suppressor function of murine and human tumor-induced myeloid-derived suppressor cells (MDSC) was studied upon CD40 ligation. Agonistic CD40 antibody caused liver damage within 24 hours after injection in two unrelated tumor models and mice strains. Using bone marrow chimeras, we demonstrate that CD40 antibody-induced hepatitis in tumor-bearing mice was dependent on the presence of CD40-expressing hematopoietic cells. Agonistic CD40 ligation-dependent liver damage was induced by the generation of reactive oxygen species. Furthermore, agonistic CD40 antibody resulted in increased CD80-positive and CD40-positive liver CD11b(+)Gr-1(+) immature myeloid cells. CD40 ligation on tumor-induced murine and human CD14(+)HLA-DR(low) peripheral blood mononuclear cells from patients with cancer reduced their immune suppressor function. Collectively, agonistic CD40 antibody treatment activated tumor-induced myeloid cells, caused myeloid-dependent hepatotoxicity, and ameliorated the suppressor function of murine and human MDSC. Collectively, our data suggest that CD40 may mature immunosuppressive myeloid cells and thereby cause liver damage in mice with an accumulation of tumor-induced hepatic MDSC.


Assuntos
Anticorpos Monoclonais , Antígenos CD40/antagonistas & inibidores , Células Mieloides/efeitos dos fármacos , Alanina Transaminase/sangue , Animais , Anticorpos Monoclonais/efeitos adversos , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Aspartato Aminotransferases/sangue , Antígenos CD40/imunologia , Linhagem Celular Tumoral , Doença Hepática Induzida por Substâncias e Drogas/sangue , Doença Hepática Induzida por Substâncias e Drogas/imunologia , Feminino , Humanos , Fígado/citologia , Fígado/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células Mieloides/imunologia , Neoplasias/sangue , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Baço/citologia , Baço/efeitos dos fármacos
10.
Eur J Immunol ; 45(4): 1148-58, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25616156

RESUMO

Immunosuppressive CD11b(+) Gr-1(+) myeloid-derived suppressor cells (MDSCs) accumulate in the livers of tumor-bearing (TB) mice. We studied hepatic MDSCs in two murine models of immune-mediated hepatitis. Unexpectedly, treatment of TB mice with Concanavalin A (Con A) or α-galactosylceramide resulted in increased alanine aminotransferase (ALT) and aspartate aminotransferase (AST) serum levels in comparison to tumor-free mice. Adoptive transfer of hepatic MDSCs into naïve mice exacerbated Con A induced liver damage. Hepatic CD11b(+) Gr-1(+) cells revealed a polarized proinflammatory gene signature after Con A treatment. An IFN-γ-dependent upregulation of CD40 on hepatic CD11b(+) Gr-1(+) cells along with an upregulation of CD80, CD86, and CD1d after Con A treatment was observed. Con A treatment resulted in a loss of suppressor function by tumor-induced CD11b(+) Gr-1(+) MDSCs as well as enhanced reactive oxygen species (ROS)-mediated hepatotoxicity. CD40 knockdown in hepatic MDSCs led to increased arginase activity upon Con A treatment and lower ALT/AST serum levels. Finally, blockade of arginase activity in Cd40(-/-) tumor-induced myeloid cells resulted in exacerbation of hepatitis and increased ROS production in vivo. Our findings indicate that in a setting of acute hepatitis, tumor-induced hepatic MDSCs act as proinflammatory immune effector cells capable of killing hepatocytes in a CD40-dependent manner.


Assuntos
Antígenos CD40/metabolismo , Hepatite/imunologia , Células Mieloides/imunologia , Transferência Adotiva , Alanina Transaminase/sangue , Animais , Antígenos CD1d/biossíntese , Arginase/antagonistas & inibidores , Arginase/biossíntese , Arginase/metabolismo , Aspartato Aminotransferases/sangue , Antígeno B7-1/biossíntese , Antígeno B7-2/biossíntese , Antígeno CD11b/metabolismo , Antígenos CD40/biossíntese , Antígenos CD40/genética , Linhagem Celular , Concanavalina A/farmacologia , Feminino , Galactosilceramidas/farmacologia , Hepatite/genética , Hepatócitos/imunologia , Hepatócitos/patologia , Fígado/citologia , Fígado/lesões , Neoplasias Hepáticas/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitógenos/farmacologia , Células Mieloides/transplante , Espécies Reativas de Oxigênio/metabolismo , Receptores de Quimiocinas/metabolismo
11.
Proc Natl Acad Sci U S A ; 112(2): 476-81, 2015 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-25548153

RESUMO

Lymphodepleting regimens are used before adoptive immunotherapy to augment the antitumor efficacy of transferred T cells by removing endogenous homeostatic "cytokine sinks." These conditioning modalities, however, are often associated with severe toxicities. We found that microRNA-155 (miR-155) enabled tumor-specific CD8(+) T cells to mediate profound antitumor responses in lymphoreplete hosts that were not potentiated by immune-ablation. miR-155 enhanced T-cell responsiveness to limited amounts of homeostatic γc cytokines, resulting in delayed cellular contraction and sustained cytokine production. miR-155 restrained the expression of the inositol 5-phosphatase Ship1, an inhibitor of the serine-threonine protein kinase Akt, and multiple negative regulators of signal transducer and activator of transcription 5 (Stat5), including suppressor of cytokine signaling 1 (Socs1) and the protein tyrosine phosphatase Ptpn2. Expression of constitutively active Stat5a recapitulated the survival advantages conferred by miR-155, whereas constitutive Akt activation promoted sustained effector functions. Our results indicate that overexpression of miR-155 in tumor-specific T cells can be used to increase the effectiveness of adoptive immunotherapies in a cell-intrinsic manner without the need for life-threatening, lymphodepleting maneuvers.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Citocinas/imunologia , MicroRNAs/genética , MicroRNAs/imunologia , Animais , Sequência de Bases , Linhagem Celular Tumoral , Citocinas/biossíntese , Células HEK293 , Humanos , Imunoterapia Adotiva , Melanoma Experimental/genética , Melanoma Experimental/imunologia , Melanoma Experimental/terapia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais , Antígeno gp100 de Melanoma/genética , Antígeno gp100 de Melanoma/imunologia
12.
Proc Natl Acad Sci U S A ; 110(4): 1434-9, 2013 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-23292936

RESUMO

Smoothened antagonists directly target the genetic basis of human basal cell carcinoma (BCC), the most common of all cancers. These drugs inhibit BCC growth, but they are not curative. Although BCC cells are monomorphic, immunofluorescence microscopy reveals a complex hierarchical pattern of growth with inward differentiation along hair follicle lineages. Most BCC cells express the transcription factor KLF4 and are committed to terminal differentiation. A small CD200(+) CD45(-) BCC subpopulation that represents 1.63 ± 1.11% of all BCC cells resides in small clusters at the tumor periphery. By using reproducible in vivo xenograft growth assays, we determined that tumor initiating cell frequencies approximate one per 1.5 million unsorted BCC cells. The CD200(+) CD45(-) BCC subpopulation recreated BCC tumor growth in vivo with typical histological architecture and expression of sonic hedgehog-regulated genes. Reproducible in vivo BCC growth was achieved with as few as 10,000 CD200(+) CD45(-) cells, representing ~1,500-fold enrichment. CD200(-) CD45(-) BCC cells were unable to form tumors. These findings establish a platform to study the effects of Smoothened antagonists on BCC tumor initiating cell and also suggest that currently available anti-CD200 therapy be considered, either as monotherapy or an adjunct to Smoothened antagonists, in the treatment of inoperable BCC.


Assuntos
Antígenos CD/metabolismo , Carcinoma Basocelular/imunologia , Carcinoma Basocelular/patologia , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/patologia , Animais , Carcinoma Basocelular/metabolismo , Diferenciação Celular , Proliferação de Células , Humanos , Queratinas/metabolismo , Fator 4 Semelhante a Kruppel , Camundongos , Camundongos Endogâmicos NOD , Camundongos Nus , Camundongos SCID , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Neoplasias Cutâneas/metabolismo , Receptor Smoothened , Transplante Heterólogo , Ensaio Tumoral de Célula-Tronco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA