Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Earths Future ; 8(7): e2020EF001497, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32999891

RESUMO

The artificial impoundment of water behind dams causes global mean sea level (GMSL) to fall as reservoirs fill but also generates a local rise in sea level due to the increased mass in the reservoir and the crustal deformation this mass induces. To estimate spatiotemporal fluctuations in sea level due to water impoundment, we use a historical data set that includes 6,329 reservoirs completed between 1900 and 2011, as well as projections of 3,565 reservoirs that are expected to be completed by 2040. The GMSL change associated with the historical data (-0.2 mm yr-1 from 1900-2011) is consistent with previous studies, but the temporal and spatial resolution allows for local studies that were not previously possible, revealing that some locations experience a sea level rise of as much as 40 mm over less than a decade. Future construction of reservoirs through ~2040 is projected to cause a GMSL fall whose rate is comparable to that of the last century (-0.3 mm yr-1) but with a geographic distribution that will be distinct from the last century, including a rise in sea level in more coastal areas. The analysis of expected construction shows that significant impoundment near coastal communities in the coming decades could enhance the flooding risk already heightened by global sea level rise.

2.
Science ; 353(6306): 1406-1408, 2016 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-27708032

RESUMO

The boundary between Earth's strong lithospheric plates and the underlying mantle asthenosphere corresponds to an abrupt seismic velocity decrease and electrical conductivity increase with depth, perhaps indicating a thin, weak layer that may strongly influence plate motion dynamics. The behavior of such a layer at subduction zones remains unexplored. We present a tomographic model, derived from on- and offshore seismic experiments, that reveals a strong low-velocity feature beneath the subducting Juan de Fuca slab along the entire Cascadia subduction zone. Through simple geodynamic arguments, we propose that this low-velocity feature is the accumulation of material from a thin, weak, buoyant layer present beneath the entire oceanic lithosphere. The presence of this feature could have major implications for our understanding of the asthenosphere and subduction zone dynamics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA