Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Adv Healthc Mater ; 13(1): e2301404, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37717209

RESUMO

Nanogels open up access to a wide range of applications and offer among others hopeful approaches for use in the field of biomedicine. This review provides a brief overview of current developments of nanogels in general, particularly in the fields of drug delivery, therapeutic applications, tissue engineering, and sensor systems. Specifically, cyclodextrin (CD)-based nanogels are important because they have exceptional complexation properties and are highly biocompatible. Nanogels as a whole and CD-based nanogels in particular can be customized in a wide range of sizes and equipped with a desired surface charge as well as containing additional molecules inside and outside, such as dyes, solubility-mediating groups or even biological vector molecules for pharmaceutical targeting. Currently, biological investigations are mainly carried out in vitro, but more and more in vivo applications are gaining importance. Modern molecular imaging methods are increasingly being used for the latter. Due to an extremely high sensitivity and the possibility of obtaining quantitative data on pharmacokinetic and pharmacodynamic properties, nuclear methods such as single photon emission computed tomography (SPECT) and positron emission tomography (PET) using radiolabeled compounds are particularly suitable here. The use of radiolabeled nanogels for imaging, but also for therapy, is being discussed.


Assuntos
Ciclodextrinas , Portadores de Fármacos , Nanogéis , Compostos Radiofarmacêuticos , Tomografia Computadorizada por Raios X , Sistemas de Liberação de Medicamentos/métodos
2.
ACS Omega ; 8(37): 33202-33228, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37744789

RESUMO

Diabetes mellitus is a prevalent chronic health condition that has caused millions of deaths worldwide. Monitoring blood glucose levels is crucial in diabetes management, aiding in clinical decision making and reducing the incidence of hypoglycemic episodes, thereby decreasing morbidity and mortality rates. Despite advancements in glucose monitoring (GM), the development of noninvasive, rapid, accurate, sensitive, selective, and stable systems for continuous monitoring remains a challenge. Addressing these challenges is critical to improving the clinical utility of GM technologies in diabetes management. In this concept, cyclodextrins (CDs) can be instrumental in the development of GM systems due to their high supramolecular recognition capabilities based on the host-guest interaction. The introduction of CDs into GM systems not only impacts the sensitivity, selectivity, and detection limit of the monitoring process but also improves biocompatibility and stability. These findings motivated the current review to provide a comprehensive summary of CD-based blood glucose sensors and their chemistry of glucose detection, efficiency, and accuracy. We categorize CD-based sensors into four groups based on their modification strategies, including CD-modified boronic acid, CD-modified mediators, CD-modified nanoparticles, and CD-modified functionalized polymers. These findings shed light on the potential of CD-based sensors as a promising tool for continuous GM in diabetes mellitus management.

3.
Molecules ; 28(15)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37570634

RESUMO

Developing biocompatible nitric oxide (NO) photoreleasing nanoconstucts is of great interest in view of the large variety of biological roles that NO plays and the unique advantage light offers in controlling NO release in space and time. In this contribution, we report the supramolecular assemblies of two NO photodonors (NOPDs), NBF-NO and RHD-NO, as water-dispersible nanogels, ca. 10 nm in diameter, based on γ-cyclodextrins (γ-CDng). These NOPDs, containing amino-nitro-benzofurazan and rhodamine chromophores as light harvesting antennae, can be activated by visible light, are highly hydrophobic and can be effectively entrapped within the γ-CDng. Despite being confined in a very restricted environment, neither NOPD suffer self-aggregation and preserve their photochemical and photophysical properties well. The blue light excitation of the weakly fluorescent γ-CDng/NBF-NO complex results in effective NO release and the concomitant generation of the highly green, fluorescent co-product, which acts as an optical NO reporter. Moreover, the green light excitation of the persistent red fluorescent γ-CDng/RHD-NO triggers NO photorelease without significantly modifying the emission properties. The activatable and persistent fluorescence emissions of the NOPDs are useful for monitoring their interactions with the Gram-positive methicillin-resistant Staphylococcus aureus, whose growth is significantly inhibited by γ-CDng/RHD-NO upon green light irradiation.


Assuntos
Ciclodextrinas , Staphylococcus aureus Resistente à Meticilina , Óxido Nítrico/química , Nanogéis , Doadores de Óxido Nítrico/farmacologia , Corantes
4.
Anal Chem ; 95(33): 12349-12357, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37524054

RESUMO

Lipopolysaccharide (LPS) is a bacterial toxin that causes fever in humans. Our small-molecule chemosensor named Zn-dpa-C2OPy shows rapid ratiometric fluorescence response to LPS in water with a detection limit of 11 pM, which is lower than that of our previously reported sensor. Spectroscopic measurements (fluorescence, absorbance, 1H NMR, and fluorescence lifetime), dynamic light scattering measurements, and transmission electron microscopy observations revealed that the fluorescence response was induced by the changes in the aggregation state via multi-point recognition of LPS through hydrophobic and electrostatic interactions, in addition to the coordination between the zinc(II)-dipicolylamine moiety of the chemosensor and the phosphate group of LPS. The proposed Zn-dpa-C2OPy chemosensor was applied to an original flow injection analysis (FIA) system with a self-developed dual-wavelength fluorophotometer, and a high throughput of 36 samples per hour was achieved. These results demonstrate the feasibility of this unique methodology combining a ratiometric fluorescent chemosensor and FIA for continuous online monitoring of LPS in water.


Assuntos
Lipopolissacarídeos , Água , Humanos , Água/química , Corantes Fluorescentes/química , Zinco/química , Espectrometria de Fluorescência/métodos
5.
Chem Commun (Camb) ; 59(27): 4071-4074, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36938636

RESUMO

Stable water-in-oil emulsion membranes can be prepared using [dilauryl(dimethyl)ammonium] bromide (DDAB), a cationic surfactant. We prepared ultrasmall cyclodextrin (γ-CyD) nanogels (γ-CyDngs) by forming ionic pairs between the secondary hydroxyl groups of γ-CyDs and DDAB. Fluorescence and NMR characterisation of the obtained γ-CyDngs revealed superior inclusion affinities compared with native γ-CyDs, beneficial for the solubilisation of hydrophobic compounds in water.

6.
Anal Sci ; 39(7): 1073-1080, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36930239

RESUMO

A simple and practical method for boron detection in water is desired in various fields such as seawater desalination, water conservation, and plant production. To develop a method for detecting boron as boric acid in water, we synthesized [Ru(acac)2(H2thap)] (acac = acetylacetonat ion, thap = 2',3',4'-trihydroxyacetophenonate (gallacetophenonate) ion) possessing a cis-diol moiety that interacts with boric acid. A comparison of UV-visible (UV-vis) absorption spectra measured in the presence and absence of boric acid at various pH values revealed that [Ru(acac)2(H2thap)] shows the highest response to boric acid at pH 8.5. Cyclic voltammograms (CVs) and differential pulse voltammograms (DPVs) of [Ru(acac)2(H2thap)] aqueous solution at pH 8.5 with varying boric acid concentrations showed a decrease in the peak current value at 0.032 V (vs. Ag|AgClaq.) and an increase in the peak current value at 0.444 V with increasing boric acid concentration. On the basis of the relationship between the ratio of current values (at 0.032 V and 0.444 V) and boric acid concentrations, the binding constant (assuming a 1:1 binding model) for the interaction between [Ru(acac)2(H2thap)] and boric acid was estimated to be 135.1 ± 9.1 mol-1 dm3, and the Limit of Detection (LOD) was calculated to be 1.03 mg B L-1.

7.
Molecules ; 28(4)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36838690

RESUMO

Antimicrobial-resistant (AMR) bacteria have become a critical global issue in recent years. The inefficacy of antimicrobial agents against AMR bacteria has led to increased difficulty in treating many infectious diseases. Analyses of the environmental distribution of bacteria are important for monitoring the AMR problem, and a rapid as well as viable pH- and temperature-independent bacterial separation method is required for collecting and concentrating bacteria from environmental samples. Thus, we aimed to develop a useful and selective bacterial separation method using a chemically synthesized nanoprobe. The metal-free benzoxaborole-based dendrimer probe BenzoB-PAMAM(+), which was synthesized from carboxy-benzoxaborole and a poly(amidoamine) (PAMAM) dendrimer, could help achieve Gram-positive bacterial separation by recognizing Gram-positive bacterial surfaces over a wide pH range, leading to the formation of large aggregations. The recognition site of benzoxaborole has a desirable high acidity and may therefore be responsible for the improved Gram-positive selectivity. The Gram-positive bacterial aggregation was then successfully collected by using a 10 µm membrane filter, with Gram-negative bacteria remaining in the filtrate solution. BenzoB-PAMAM(+) will thus be useful for application in biological analyses and could contribute to further investigations of bacterial distributions in environmental soil or water.


Assuntos
Anti-Infecciosos , Dendrímeros , Bactérias , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Antibacterianos
8.
ACS Sens ; 8(1): 218-227, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36537860

RESUMO

Fluorescence recognition of d-glucose in water with excellent sensitivity, selectivity, and chiral selectivity is desired because d-glucose is an essential component in biological and pathological processes. We report an innovative approach that exploits the 1:2 stoichiometric inclusion complexes of γ-cyclodextrin (γ-CyD) with two molecules of fluorescent monoboronic acid-based receptors, which form a pseudo-diboronic acid moiety as the recognition site for d-glucose in water. Two monoboronic acids (1F and 2N) were easily synthesized without heating or column purification. The 1:2 stoichiometric inclusion complexes (1F/γ-CyD and 2N/γ-CyD) were prepared in a mixture of dimethyl sulfoxide/water (2/98 in v/v) by mixing γ-CyD and the corresponding monoboronic acids. Both 1F/γ-CyD and 2N/γ-CyD exhibited strong turn-on response to d-glucose with excellent selectivity over nine other saccharides in the water-rich solvent at pH 7.4 owing to the ditopic recognition of d-glucose by the pseudo-diboronic acid moieties. The limits of detection of 1F/γ-CyD and 2N/γ-CyD for d-glucose were 1.1 and 1.8 µM, respectively, indicating the remarkable sensitivity for the detection of d-glucose at µM levels. 1F/γ-CyD and 2N/γ-CyD also demonstrated chiral-selective recognition of d-glucose, which is apparent from the 2.0- and 6.3-fold enhancement of fluorescence by the addition of d-glucose relative to l-glucose addition, owing to the chiral pseudo-diboronic acid moieties produced by the chiral γ-CyD cavity. To the best of our knowledge, 2N/γ-CyD has the highest d/l selectivity among hitherto reported fluorescent diboronic acid-based receptors.


Assuntos
gama-Ciclodextrinas , gama-Ciclodextrinas/química , Ácidos Borônicos/química , Glucose/química , Água/química , Corantes
9.
Anal Sci ; 39(2): 213-220, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36436126

RESUMO

The photo-quenching mechanism of 2-(4-phenylboronic acid)-1-pyrenemethamide (C1-APB), which has potential application as a saccharide-recognition sensor, was investigated. By performing temperature-dependent time-resolved photoluminescence measurements, we determined the mechanism responsible for the photo-quenching properties of C1-APB to be a photoinduced electron transfer (PET). Moreover, the dependence of the electron transfer rate (kPET) on the solvent water concentration was explored in detail, and it was found that kPET increased by many orders of magnitude with increasing water concentrations. This phenomenon was analyzed using the Marcus model, in which the electron transfer can be represented by a potential diagram involving the potential barrier (ΔGa) and frequency factor (A). With the aid of temperature-dependent measurements, the contribution of ΔGa and A to the increase in kPET was successfully analyzed independently, which allowed us to discuss the effect of water molecule orientation and change in molecular structure of C1-APB. The temperature-dependence measurements performed in this study offer a powerful research tool for investigating the PET process, and will contribute to the development of molecular recognition fluorescent sensors.

10.
ACS Appl Bio Mater ; 5(11): 5255-5263, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36318469

RESUMO

The need for a selective bacterial recognition method is evident to overcome the global problem of antibiotic resistance. Even though researchers have focused on boronic acid-based nanoprobes that immediately form boronate esters with saccharides at room temperature, the mechanism has not been well studied. We have developed boronic acid-modified poly(amidoamine) (PAMAM) dendrimers with various surface properties to investigate the mechanism of bacterial recognition. The boronic acid-based nanoprobes showed selectivity toward strains, species, or a certain group of bacteria by controlling their surface properties. Our nanoprobes showed selectivity toward Gram-positive bacteria or Escherichia coli K12W3110 without having to modify the boronic acid recognition sites. The results were obtained in 20 min and visible to the naked eye. Selectivity toward Gram-positive bacteria was realized through electrostatic interaction between the bacterial surface and the positively charged nanoprobes. In this case, the recognition target was lipoteichoic acid on the bacterial surface. On the other hand, pseudo-zwitterionic nanoprobes showed selectivity for E. coli K12W3110, indicating that phenylboronic acid did not recognize the outermost O-antigen on the lipopolysaccharide layer. Boronic acid-based nanoprobes with optimized surface properties are expected to be a powerful clinical tool to recognize multidrug-resistant strains or highly pathogenic bacteria.


Assuntos
Dendrímeros , Escherichia coli , Bactérias Gram-Positivas , Ácidos Borônicos , Propriedades de Superfície
11.
ACS Omega ; 7(29): 25891-25897, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35910126

RESUMO

Endotoxin is a lipopolysaccharide (LPS) that is found in the outer membrane of the cell wall of Gram-negative bacteria. Due to its high toxicity, the allowable endotoxin limit for water for injection is set at a very low value. Conventional methods for endotoxin detection are time-consuming and expensive and have low reproducibility. A previous study has shown that dipicolylamine (dpa)-modified pyrene-based probes exhibit fluorescence enhancement in response to LPS; however, the application of such probes to the sensing of LPS is not discussed. Against this backdrop, we have developed a simple and rapid endotoxin detection method using a dpa-modified pyrenyl probe having a zinc(II) center (Zn-dpa-C4Py). When LPS was added into Zn-dpa-C4Py solution, excimer emission of the pyrene moiety emerged at 470 nm. This probe can detect picomolar concentrations of LPS (limit of detection = 41 pM). The high sensitivity of the probe is ascribed to the electrostatic and hydrophobic interactions between the probe and LPS, which result in the dimer formation of the pyrene moieties. We also found that Zn-dpa-C4Py has the highest selectivity for LPS compared with other phosphate derivatives, which is probably caused by the co-aggregation of the probe with LPS. We propose that Zn-dpa-C4Py is a promising chemical sensor for the detection of endotoxin in medical and pharmaceutical applications.

12.
RSC Adv ; 12(31): 20259-20263, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35919610

RESUMO

Various diboronic acid-based chemosensors for d-glucose have been developed for use in diabetes diagnostic systems. However, most of these chemosensors have limitations, such as poor water solubility, difficulties in synthesis, and inability to selectively detect d-glucose from among other saccharides. We report a simple chemosensor based on a supramolecular complex of fluorophenylboronic acid-appended ß-cyclodextrin (FPB-ßCyD) and an anthracene-based probe having a boronic acid moiety (1). Hydrophobic 1 is encapsulated in the cyclodextrin cavity of FPB-ßCyD, making the supramolecular complex (1/FPB-ßCyD) applicable in a water-rich solvent mixture (98% water). Interestingly, 1/FPB-ßCyD showed a strong turn-on response to d-glucose with a 9.6-fold enhancement in fluorescence intensity, and no response to other saccharides. This study uncovers an innovative approach based on the supramolecular assembly of simple components for the development of a water-soluble d-glucose chemosensor with excellent selectivity.

13.
Int J Mol Sci ; 23(11)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35682727

RESUMO

Specifically designed electrochemical sensors are standing out as alternatives to enzyme-based biosensors for the sensing of metabolites. In our previous works, we developed a new electrochemical assay based on cyclodextrin supramolecular complexes. A ferrocene moiety (Fc) was chemically modified by phenylboronic acid (4-Fc-PB) and combined with two different kinds of cyclodextrins (CDs): ß-CD and ß-CD modified by a dipicolylamine group (dpa-p-HB-ß-CDs) for the sensing of fructose and adenosine-triphosphate (ATP), respectively. The aim of the present work is to better comprehend the features underlining the aforementioned complex formation. For the first time, a study about inclusion phenomena between the 4-Fc-PB electroactive probe with ß-CD and with dpa-p-HB-ß-CD was performed by using nuclear magnetic resonance (NMR) analysis. In particular, we focused on providing insights on the interaction involved and on the calculation of the binding constant of 4-Fc-PB/ß-CD supramolecular complex, and elucidation about a drift in the time observed during the control experiments of the electrochemical measurements for the 4-Fc-PB/dpa-p-HB-ß-CD supramolecular complex. In this sense, this paper represents a step further in the explanation of the electrochemical results obtained, pointing out the nature of the interactions present both in the formation of the inclusions and in the sensing with the analytes.


Assuntos
Ciclodextrinas , beta-Ciclodextrinas , Ácidos Borônicos , Ciclodextrinas/química , Espectroscopia de Ressonância Magnética , Metalocenos , beta-Ciclodextrinas/química
14.
Molecules ; 27(10)2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35630683

RESUMO

The aqueous extract of the leaves of Odontonema strictum (OSM) is used in folk medicine for its antihypertensive properties, and it contains a wide range of secondary metabolites, mostly polyphenols such as verbascoside and isoverbascoside, which could play a major role in the preparation of silver nanoparticles. In this study, we aimed to prepare AgNPs for the first time using the OSM leaf extract (OSM-AgNPs) to investigate their free radical-scavenging potency against 1,1-diphenyl-2-picrylhydrazyl (DPPH) and hydrogen peroxide (H2O2). Dynamic light scattering (DLS), UV/Vis, Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), and X-ray photoelectron spectroscopy (XPS) were used to characterize the OSM-AgNPs. With a size around 100 nm and a ζ-potential of -41.1 mV, OSM-AgNPs showed a good stability and a better colloidal property due to electrostatic repulsion and the dispersity. The strong absorption peak at 3 keV in the EDX spectra indicated that silver was the major constituent. Additionally, the existence of silver atoms was confirmed by the Ag 3d5/2 peak around 367 eV in the XPS spectra. IC50 values of 116 µg/mL and 4.4 µg/mL were obtained for the scavenging activities of DPPH and H2O2, respectively. The synthetic OSM-AgNPs can be further exploited as potential antioxidant agents.


Assuntos
Acanthaceae , Nanopartículas Metálicas , Antioxidantes/química , Antioxidantes/farmacologia , Peróxido de Hidrogênio , Nanopartículas Metálicas/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Prata/química
15.
RSC Adv ; 12(19): 12145-12151, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35481078

RESUMO

Because d-allulose has been attracting attention as a zero-calorie sugar, the selective sensing of d-allulose is desired to investigate its health benefits. We report herein a novel fluorescence chemosensor that is based on an inclusion complex of γ-cyclodextrin (γ-CyD) with a benzoxaborole-based probe. Two inclusion complexes, 1/γCyD and 2/γCyD, were prepared by mixing γ-CyD with their corresponding probes in a water-rich solvent, where γ-CyD encapsulates two molecules of the probes inside its cavity to form a pyrene dimer. Both 1/γCyD and 2/γCyD exhibit monomeric and dimeric fluorescence from the pyrene moieties. By the reaction of 1/γCyD with saccharides, the intensities of monomeric and dimeric fluorescence remained unchanged and decreased, respectively. We have demonstrated that 1/γCyD has much higher affinity for d-allulose than for the other saccharides (d-fructose, d-glucose, and d-galactose). The conditional equilibrium constants for the reaction systems were determined to be 498 ± 35 M-1 for d-fructose, 48.4 ± 25.3 M-1 for d-glucose, 15.0 ± 3.3 M-1 for d-galactose, and (8.05 ± 0.59) × 103 M-1 for d-allulose. These features of 1/γCyD enable ratiometric fluorescence sensing with high sensitivity and selectivity for d-allulose. The limits of detection and quantification of 1/γCyD for d-allulose at pH 8.0 were determined to be 6.9 and 21 µM, respectively. Induced circular dichroism spectral study has shown that the reaction of 1/γCyD with d-allulose causes the monomerisation of the dimer of probe 1 that is encapsulated by γ-CyD, which leads to the diminishment of the dimeric fluorescence.

16.
Sensors (Basel) ; 21(9)2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946193

RESUMO

This study reports a novel, fast, easy, and sensitive detection method for bacteria which is urgently needed to diagnose infections in their early stages. Our work presents a complex of poly(amidoamine) dendrimer modified by phenylboronic acid and labeled by a fluorescent dansyl group (Dan-B8.5-PAMAM). Our system detects bacteria in 20 min with a sensitivity of approximately 104 colony-forming units (CFU)·mL-1. Moreover, it does not require any peculiar technical skills or expensive materials. The driving force for bacteria recognition is the binding between terminal phenylboronic acids on the probe and bacteria's surface glycolipids, rather than electrostatic interactions. The aggregation caused by such binding reduces fluorescence. Even though our recognition method does not distinguish between live or dead bacteria, it shows selective antibacterial activity towards Gram-negative bacteria. This study may potentially contribute a new method for the convenient detection and killing of bacteria.


Assuntos
Dendrímeros , Antibacterianos , Ácidos Borônicos , Corantes , Bactérias Gram-Negativas
17.
Int J Mol Sci ; 22(9)2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33925230

RESUMO

Cyclodextrins (CyDs) are water-soluble host molecules possessing a nanosized hydrophobic cavity. In the realm of molecular recognition, this cavity is used not only as a recognition site but also as a reaction medium, where a hydrophobic sensor recognizes a guest molecule. Based on the latter concept, we have designed a novel supramolecular sensing system composed of Zn(II)-dipicolylamine metal complex-based azobenzene (1-Zn) and 3A-amino-3A-deoxy-(2AS,3AS)-γ-cyclodextrin (3-NH2-γ-CyD) for sensing adenosine-5'-triphosphate (ATP). 1-Zn showed redshifts in the UV-Vis spectra and induced circular dichroism (ICD) only when both ATP and 3-NH2-γ-CyD were present. Calculations of equilibrium constants indicated that the amino group of 3-NH2-γ-CyD was involved in the formation of supramolecular 1-Zn/3-NH2-γ-CyD/ATP. The Job plot of the ICD spectral response revealed that the stoichiometry of 1-Zn/3-NH2-γ-CyD/ATP was 2:1:1. The pH effect was examined and 1-Zn/3-NH2-γ-CyD/ATP was most stable in the neutral condition. The NOESY spectrum suggested the localization of 1-Zn in the 3-NH2-γ-CyD cavity. Based on the obtained results, the metal coordination interaction of 1-Zn and the electrostatic interaction of 3-NH2-γ-CyD were found to take place for ATP recognition. The "reaction medium approach" enabled us to develop a supramolecular sensing system that undergoes multi-point interactions in water. This study is the first step in the design of a selective sensing system based on a good understanding of supramolecular structures.


Assuntos
Compostos Azo/química , Ciclodextrinas/química , gama-Ciclodextrinas/química , Trifosfato de Adenosina , Aminas/química , Dicroísmo Circular , Interações Hidrofóbicas e Hidrofílicas , Espectroscopia de Ressonância Magnética/métodos , Modelos Moleculares , Ácidos Picolínicos/química , Solubilidade , Água/química , Zinco , beta-Ciclodextrinas
18.
Anal Sci ; 37(5): 721-726, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33455966

RESUMO

The chemical sensing of saccharides is of importance for the diagnosis of diabetes. Various enzymatic sensors have been developed, but their heat and pH instability issues need to be resolved. In this regard, the development of artificial saccharide sensors with high stability is attracting attention. We have designed a heat- and pH-stable supramolecular inclusion complex system composed of cyclodextrin (CyD) as a host and a phenylboronic acid (PB) probe possessing pyrene as a fluorescent guest. Several probes possessing alkyl spacers having various lengths between the PB and the pyrene moiety, Cn-APB (n = 1 - 4), were newly synthesized and evaluated with respect to their monosaccharide recognition ability on the basis of the fluorescence response through the cyclic esterification of monosaccharide and PB. These Cn-APB/CyD supramolecular inclusion complexes have exhibited a selective fluorescence response towards fructose in aqueous solution based on the photo-induced electron transfer mechanism. The spacer length of the alkyl group in Cn-APB significantly affects the affinity for saccharides. With respect to the complex between C4-APB and PB-modified CyD (3-PB-γ-CyD), it was found that the supramolecular inclusion complexes had high selectivity for glucose with significant fluorescence enhancement. These results indicate that the lengths of the alkyl spacers in the probe molecules are important to control the recognition of saccharides in aqueous solution.

19.
Molecules ; 27(1)2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-35011488

RESUMO

We have developed a convenient and selective method for the detection of Gram-positive bacteria using a ditopic poly(amidoamine) (PAMAM) dendrimer probe. The dendrimer that was modified with dipicolylamine (dpa) and phenylboronic acid groups showed selectivity toward Staphylococcus aureus. The ditopic dendrimer system had higher sensitivity and better pH tolerance than the monotopic PAMAM dendrimer probe. We also investigated the mechanisms of various ditopic PAMAM dendrimer probes and found that the selectivity toward Gram-positive bacteria was dependent on a variety of interactions. Supramolecular interactions, such as electrostatic interaction and hydrophobic interaction, per se, did not contribute to the bacterial recognition ability, nor did they improve the selectivity of the ditopic dendrimer system. In contrast, the ditopic PAMAM dendrimer probe that had a phosphate-sensing dpa group and formed a chelate with metal ions showed improved selectivity toward S. aureus. The results suggested that the targeted ditopic PAMAM dendrimer probe showed selectivity toward Gram-positive bacteria. This study is expected to contribute to the elucidation of the interaction between synthetic molecules and bacterial surface. Moreover, our novel method showed potential for the rapid and species-specific recognition of various bacteria.


Assuntos
Ácidos Borônicos , Dendrímeros , Bactérias Gram-Positivas/fisiologia , Infecções por Bactérias Gram-Positivas/diagnóstico , Infecções por Bactérias Gram-Positivas/microbiologia , Concentração de Íons de Hidrogênio , Técnicas de Diagnóstico Molecular , Ácidos Borônicos/química , Dendrímeros/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Sondas Moleculares , Sensibilidade e Especificidade
20.
ACS Appl Bio Mater ; 4(4): 3041-3045, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35014392

RESUMO

Electrochemical detection based on cyclodextrin supramolecular complexes is founded on the competitive binding between electroactive probes and target molecules. This limits their versatility to be used for sensing a broad range of metabolites. In this work, we demonstrate the significant role of zinc ions as well as of ß-cyclodextrins modified with dipicolylamine and of a phenylboronic acid-modified ferrocene probe to address a selective electrochemical detection of adenosin triphosphate (ATP). Our findings will definitively have an impact in oncological point-of-care systems, since a high level of extracellular ATP reveals the inflammatory response due to chemotherapeutic treatments.


Assuntos
Aminas/química , Materiais Biocompatíveis/química , Ciclodextrinas/química , Técnicas Eletroquímicas , Ácidos Picolínicos/química , Polifosfatos/química , Sítios de Ligação , Materiais Biocompatíveis/síntese química , Humanos , Substâncias Macromoleculares/síntese química , Substâncias Macromoleculares/química , Teste de Materiais , Estrutura Molecular , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA