Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Cell ; 187(17): 4656-4673.e28, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-38942013

RESUMO

The ability of proteins and RNA to coalesce into phase-separated assemblies, such as the nucleolus and stress granules, is a basic principle in organizing membraneless cellular compartments. While the constituents of biomolecular condensates are generally well documented, the mechanisms underlying their formation under stress are only partially understood. Here, we show in yeast that covalent modification with the ubiquitin-like modifier Urm1 promotes the phase separation of a wide range of proteins. We find that the drop in cellular pH induced by stress triggers Urm1 self-association and its interaction with both target proteins and the Urm1-conjugating enzyme Uba4. Urmylation of stress-sensitive proteins promotes their deposition into stress granules and nuclear condensates. Yeast cells lacking Urm1 exhibit condensate defects that manifest in reduced stress resilience. We propose that Urm1 acts as a reversible molecular "adhesive" to drive protective phase separation of functionally critical proteins under cellular stress.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Estresse Fisiológico , Ubiquitinas , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ubiquitinas/metabolismo , Condensados Biomoleculares/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Concentração de Íons de Hidrogênio , Grânulos de Estresse/metabolismo
2.
FEBS Lett ; 597(13): 1679-1680, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37334940

RESUMO

Photosynthesis uses the energy of sunlight to convert water and atmospheric CO2 into sugars, providing food and oxygen for life. The fixation of atmospheric CO2 in this crucial biological process is mediated by the enzyme Rubisco. The inefficiencies of Rubisco have inspired researchers for decades to explore ways to improve its function with the goal of increasing crop yields [1-4], and more recently to combat global warming [5]. In this graphical review we highlight the challenges involved in engineering plant Rubisco, with a focus on the extensive chaperone requirement for its biogenesis. We discuss strategies for engineering the catalytic properties of Rubisco and for sequestering the enzyme in membraneless compartments to increase CO2 fixation.


Assuntos
Dióxido de Carbono , Ribulose-Bifosfato Carboxilase , Ribulose-Bifosfato Carboxilase/genética , Ribulose-Bifosfato Carboxilase/metabolismo , Fotossíntese , Chaperonas Moleculares/metabolismo , Plantas/metabolismo
3.
Methods Mol Biol ; 2563: 269-296, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36227479

RESUMO

Carboxysomes are large, cytosolic bodies present in all cyanobacteria and many proteobacteria that function as the sites of photosynthetic CO2 fixation by the enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). The carboxysome lumen is enriched with Rubisco and carbonic anhydrase (CA). The polyhedral proteinaceous shell allows the passage of HCO3- ions into the carboxysome, where they are converted to CO2 by CA. Thus, the carboxysome functions as a CO2-concentrating mechanism (CCM), enhancing the efficiency of Rubisco in CO2 fixation. In ß-cyanobacteria, carboxysome biogenesis first involves the aggregation of Rubisco by CcmM, a scaffolding protein that exists in two isoforms. Both isoforms contain a minimum of three Rubisco small subunit-like (SSUL) domains, connected by flexible linkers. Multivalent interaction between these linked SSUL domains with Rubisco results in phase separation and condensate formation. Here, we use Rubisco and the short isoform of CcmM (M35) of the ß-cyanobacterium Synechococcus elongatus PCC7942 to describe the methods used for in vitro analysis of the mechanism of condensate formation driven by the SSUL domains. The methods include turbidity assays, bright-field and fluorescence microscopy, as well as transmission electron microscopy (TEM) in both negative staining and cryo-conditions.


Assuntos
Anidrases Carbônicas , Ribulose-Bifosfato Carboxilase , Proteínas de Bactérias/metabolismo , Dióxido de Carbono/metabolismo , Anidrases Carbônicas/metabolismo , Organelas/metabolismo , Oxigenases/metabolismo , Isoformas de Proteínas/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo
4.
Nat Struct Mol Biol ; 28(11): 909-922, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34759380

RESUMO

Carboxysomes in cyanobacteria enclose the enzymes Rubisco and carbonic anhydrase to optimize photosynthetic carbon fixation. Understanding carboxysome assembly has implications in agricultural biotechnology. Here we analyzed the role of the scaffolding protein CcmM of the ß-cyanobacterium Synechococcus elongatus PCC 7942 in sequestrating the hexadecameric Rubisco and the tetrameric carbonic anhydrase, CcaA. We find that the trimeric CcmM, consisting of γCAL oligomerization domains and linked small subunit-like (SSUL) modules, plays a central role in mediation of pre-carboxysome condensate formation through multivalent, cooperative interactions. The γCAL domains interact with the C-terminal tails of the CcaA subunits and additionally mediate a head-to-head association of CcmM trimers. Interestingly, SSUL modules, besides their known function in recruiting Rubisco, also participate in intermolecular interactions with the γCAL domains, providing further valency for network formation. Our findings reveal the mechanism by which CcmM functions as a central organizer of the pre-carboxysome multiprotein matrix, concentrating the core components Rubisco and CcaA before ß-carboxysome shell formation.


Assuntos
Proteínas de Bactérias/metabolismo , Anidrases Carbônicas/metabolismo , Domínios e Motivos de Interação entre Proteínas/fisiologia , Ribulose-Bifosfato Carboxilase/metabolismo , Synechococcus/metabolismo , Condensados Biomoleculares/fisiologia , Microscopia Crioeletrônica , Fotossíntese/fisiologia , Conformação Proteica , Synechococcus/genética
5.
Mol Cell ; 81(14): 2914-2928.e7, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34107307

RESUMO

Molecular chaperones assist with protein folding by interacting with nascent polypeptide chains (NCs) during translation. Whether the ribosome can sense chaperone defects and, in response, abort translation of misfolding NCs has not yet been explored. Here we used quantitative proteomics to investigate the ribosome-associated chaperone network in E. coli and the consequences of its dysfunction. Trigger factor and the DnaK (Hsp70) system are the major NC-binding chaperones. HtpG (Hsp90), GroEL, and ClpB contribute increasingly when DnaK is deficient. Surprisingly, misfolding because of defects in co-translational chaperone function or amino acid analog incorporation results in recruitment of the non-canonical release factor RF3. RF3 recognizes aberrant NCs and then moves to the peptidyltransferase site to cooperate with RF2 in mediating chain termination, facilitating clearance by degradation. This function of RF3 reduces the accumulation of misfolded proteins and is critical for proteostasis maintenance and cell survival under conditions of limited chaperone availability.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Chaperonas Moleculares/metabolismo , Biossíntese de Proteínas/fisiologia , Aminoácidos/metabolismo , Sobrevivência Celular/fisiologia , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Fatores de Terminação de Peptídeos/metabolismo , Peptidil Transferases/metabolismo , Ligação Proteica/fisiologia , Dobramento de Proteína , Proteômica/métodos , Proteostase/fisiologia , Ribossomos/metabolismo
6.
Cell ; 183(2): 457-473.e20, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32979320

RESUMO

Rubisco, the key enzyme of CO2 fixation in photosynthesis, is prone to inactivation by inhibitory sugar phosphates. Inhibited Rubisco undergoes conformational repair by the hexameric AAA+ chaperone Rubisco activase (Rca) in a process that is not well understood. Here, we performed a structural and mechanistic analysis of cyanobacterial Rca, a close homolog of plant Rca. In the Rca:Rubisco complex, Rca is positioned over the Rubisco catalytic site under repair and pulls the N-terminal tail of the large Rubisco subunit (RbcL) into the hexamer pore. Simultaneous displacement of the C terminus of the adjacent RbcL opens the catalytic site for inhibitor release. An alternative interaction of Rca with Rubisco is mediated by C-terminal domains that resemble the small Rubisco subunit. These domains, together with the N-terminal AAA+ hexamer, ensure that Rca is packaged with Rubisco into carboxysomes. The cyanobacterial Rca is a dual-purpose protein with functions in Rubisco repair and carboxysome organization.


Assuntos
Cianobactérias/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Organelas/metabolismo , Fotossíntese/fisiologia , Ribulose-Bifosfato Carboxilase/fisiologia , Ativador de Plasminogênio Tecidual/química , Ativador de Plasminogênio Tecidual/metabolismo
7.
Trends Biochem Sci ; 45(9): 748-763, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32471779

RESUMO

A major challenge faced by human civilization is to ensure that agricultural productivity keeps pace with population growth and a changing climate. All food supply is generated, directly or indirectly, through the process of photosynthesis, with the enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyzing the assimilation of atmospheric CO2. Despite its pivotal role, Rubisco is a remarkably inefficient enzyme and must be made by plants in large quantities. However, efforts to enhance Rubisco performance by bioengineering have been hampered by its extensive reliance on molecular chaperones and auxiliary factors for biogenesis, metabolic repair, and packaging into membraneless microcompartments. Here, we review recent advances in understanding these complex machineries and discuss their implications for improving Rubisco carboxylase activity with the goal to increase crop yields.


Assuntos
Chaperonas Moleculares , Plantas/enzimologia , Ribulose-Bifosfato Carboxilase , Chaperonas Moleculares/metabolismo , Fotossíntese , Ribulose-Bifosfato Carboxilase/metabolismo
8.
FEBS Lett ; 594(17): 2770-2781, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32446288

RESUMO

Molecular chaperones are highly conserved proteins that promote proper folding of other proteins in vivo. Diverse chaperone systems assist de novo protein folding and trafficking, the assembly of oligomeric complexes, and recovery from stress-induced unfolding. A fundamental function of molecular chaperones is to inhibit unproductive protein interactions by recognizing and protecting hydrophobic surfaces that are exposed during folding or following proteotoxic stress. Beyond this basic principle, it is now clear that chaperones can also actively and specifically accelerate folding reactions in an ATP-dependent manner. We focus on the bacterial Hsp70 and chaperonin systems as paradigms, and review recent work that has advanced our understanding of how these chaperones act as catalysts of protein folding.


Assuntos
Trifosfato de Adenosina/química , Chaperonina 60/química , Chaperoninas/química , Proteínas de Escherichia coli/química , Escherichia coli/genética , Proteínas de Choque Térmico HSP70/química , Chaperonas Moleculares/química , Trifosfato de Adenosina/metabolismo , Biocatálise , Chaperonina 60/genética , Chaperonina 60/metabolismo , Chaperoninas/genética , Chaperoninas/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Desdobramento de Proteína
9.
PLoS One ; 15(4): e0230090, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32339190

RESUMO

Chaperonins are ubiquitous molecular chaperones found in all domains of life. They form ring-shaped complexes that assist in the folding of substrate proteins in an ATP-dependent reaction cycle. Key to the folding cycle is the transient encapsulation of substrate proteins by the chaperonin. Here we present a structural and functional characterization of the chaperonin gp146 (ɸEL) from the phage EL of Pseudomonas aeruginosa. ɸEL, an evolutionarily distant homolog of bacterial GroEL, is active in ATP hydrolysis and prevents the aggregation of denatured protein in a nucleotide-dependent manner. However, ɸEL failed to refold the encapsulation-dependent model substrate rhodanese and did not interact with E. coli GroES, the lid-shaped co-chaperone of GroEL. ɸEL forms tetradecameric double-ring complexes, which dissociate into single rings in the presence of ATP. Crystal structures of ɸEL (at 3.54 and 4.03 Å) in presence of ATP•BeFx revealed two distinct single-ring conformational states, both with open access to the ring cavity. One state showed uniform ATP-bound subunit conformations (symmetric state), whereas the second combined distinct ATP- and ADP-bound subunit conformations (asymmetric state). Cryo-electron microscopy of apo-ɸEL revealed a double-ring structure composed of rings in the asymmetric state (3.45 Å resolution). We propose that the phage chaperonin undergoes nucleotide-dependent conformational switching between double- and single rings and functions in aggregation prevention without substrate protein encapsulation. Thus, ɸEL may represent an evolutionarily more ancient chaperonin prior to acquisition of the encapsulation mechanism.


Assuntos
Chaperoninas/química , Dobramento de Proteína , Fagos de Pseudomonas/química , Pseudomonas aeruginosa/virologia , Proteínas Virais/química , Chaperonina 10/química , Chaperonina 60/química , Microscopia Crioeletrônica , Escherichia coli/química , Proteínas de Escherichia coli/química , Domínios Proteicos , Fagos de Pseudomonas/metabolismo
10.
J Mol Biol ; 432(7): 2304-2318, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32135190

RESUMO

The cylindrical chaperonin GroEL and its cofactor GroES mediate ATP-dependent protein folding in Escherichia coli by transiently encapsulating non-native substrate in a nano-cage formed by the GroEL ring cavity and the lid-shaped GroES. Mechanistic studies of GroEL/ES with heterologous protein substrates suggested that the chaperonin is inefficient, typically requiring multiple ATP-dependent encapsulation cycles with only a few percent of protein folded per cycle. Here we analyzed the spontaneous and chaperonin-assisted folding of the essential enzyme 5,10-methylenetetrahydrofolate reductase (MetF) of E. coli, an obligate GroEL/ES substrate. We found that MetF, a homotetramer of 33-kDa subunits with (ß/α)8 TIM-barrel fold, populates a kinetically trapped folding intermediate(s) (MetF-I) upon dilution from denaturant that fails to convert to the native state, even in the absence of aggregation. GroEL/ES recognizes MetF-I and catalyzes rapid folding, with ~50% of protein folded in a single round of encapsulation. Analysis by hydrogen/deuterium exchange at peptide resolution showed that the MetF subunit folds to completion in the GroEL/ES nano-cage and binds its cofactor flavin adenine dinucleotide. Rapid folding required the net negative charge character of the wall of the chaperonin cavity. These findings reveal a remarkable capacity of GroEL/ES to catalyze folding of an endogenous substrate protein that would have coevolved with the chaperonin system.


Assuntos
5,10-Metilenotetra-Hidrofolato Redutase (FADH2)/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Dobramento de Proteína , Trifosfato de Adenosina/metabolismo , Catálise , Cinética , Modelos Moleculares , Conformação Proteica , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA