Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 533, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816789

RESUMO

BACKGROUND: Environmental stress factors, such as biotic and abiotic stress, are becoming more common due to climate variability, significantly affecting global maize yield. Transcriptome profiling studies provide insights into the molecular mechanisms underlying stress response in maize, though the functions of many genes are still unknown. To enhance the functional annotation of maize-specific genes, MaizeGDB has outlined a data-driven approach with an emphasis on identifying genes and traits related to biotic and abiotic stress. RESULTS: We mapped high-quality RNA-Seq expression reads from 24 different publicly available datasets (17 abiotic and seven biotic studies) generated from the B73 cultivar to the recent version of the reference genome B73 (B73v5) and deduced stress-related functional annotation of maize gene models. We conducted a robust meta-analysis of the transcriptome profiles from the datasets to identify maize loci responsive to stress, identifying 3,230 differentially expressed genes (DEGs): 2,555 DEGs regulated in response to abiotic stress, 408 DEGs regulated during biotic stress, and 267 common DEGs (co-DEGs) that overlap between abiotic and biotic stress. We discovered hub genes from network analyses, and among the hub genes of the co-DEGs we identified a putative NAC domain transcription factor superfamily protein (Zm00001eb369060) IDP275, which previously responded to herbivory and drought stress. IDP275 was up-regulated in our analysis in response to eight different abiotic and four different biotic stresses. A gene set enrichment and pathway analysis of hub genes of the co-DEGs revealed hormone-mediated signaling processes and phenylpropanoid biosynthesis pathways, respectively. Using phylostratigraphic analysis, we also demonstrated how abiotic and biotic stress genes differentially evolve to adapt to changing environments. CONCLUSIONS: These results will help facilitate the functional annotation of multiple stress response gene models and annotation in maize. Data can be accessed and downloaded at the Maize Genetics and Genomics Database (MaizeGDB).


Assuntos
Anotação de Sequência Molecular , Estresse Fisiológico , Transcriptoma , Zea mays , Zea mays/genética , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Perfilação da Expressão Gênica , Genes de Plantas
2.
Genetics ; 227(1)2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38577974

RESUMO

Pan-genomes, encompassing the entirety of genetic sequences found in a collection of genomes within a clade, are more useful than single reference genomes for studying species diversity. This is especially true for a species like Zea mays, which has a particularly diverse and complex genome. Presenting pan-genome data, analyses, and visualization is challenging, especially for a diverse species, but more so when pan-genomic data is linked to extensive gene model and gene data, including classical gene information, markers, insertions, expression and proteomic data, and protein structures as is the case at MaizeGDB. Here, we describe MaizeGDB's expansion to include the genic subset of the Zea pan-genome in a pan-gene data center featuring the maize genomes hosted at MaizeGDB, and the outgroup teosinte Zea genomes from the Pan-Andropoganeae project. The new data center offers a variety of browsing and visualization tools, including sequence alignment visualization, gene trees and other tools, to explore pan-genes in Zea that were calculated by the pipeline Pandagma. Combined, these data will help maize researchers study the complexity and diversity of Zea, and to use the comparative functions to validate pan-gene relationships for a selected gene model.


Assuntos
Bases de Dados Genéticas , Genoma de Planta , Genômica , Zea mays , Zea mays/genética , Genômica/métodos , Filogenia
3.
Bioinformatics ; 40(2)2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38337024

RESUMO

SUMMARY: Understanding the effects of genetic variants is crucial for accurately predicting traits and functional outcomes. Recent approaches have utilized artificial intelligence and protein language models to score all possible missense variant effects at the proteome level for a single genome, but a reliable tool is needed to explore these effects at the pan-genome level. To address this gap, we introduce a new tool called PanEffect. We implemented PanEffect at MaizeGDB to enable a comprehensive examination of the potential effects of coding variants across 50 maize genomes. The tool allows users to visualize over 550 million possible amino acid substitutions in the B73 maize reference genome and to observe the effects of the 2.3 million natural variations in the maize pan-genome. Each variant effect score, calculated from the Evolutionary Scale Modeling (ESM) protein language model, shows the log-likelihood ratio difference between B73 and all variants in the pan-genome. These scores are shown using heatmaps spanning benign outcomes to potential functional consequences. In addition, PanEffect displays secondary structures and functional domains along with the variant effects, offering additional functional and structural context. Using PanEffect, researchers now have a platform to explore protein variants and identify genetic targets for crop enhancement. AVAILABILITY AND IMPLEMENTATION: The PanEffect code is freely available on GitHub (https://github.com/Maize-Genetics-and-Genomics-Database/PanEffect). A maize implementation of PanEffect and underlying datasets are available at MaizeGDB (https://www.maizegdb.org/effect/maize/).


Assuntos
Bases de Dados Genéticas , Zea mays , Zea mays/genética , Inteligência Artificial , Genoma de Planta , Fenótipo , Software
4.
Genetics ; 224(1)2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-36755109

RESUMO

Protein structures play an important role in bioinformatics, such as in predicting gene function or validating gene model annotation. However, determining protein structure was, until now, costly and time-consuming, which resulted in a structural biology bottleneck. With the release of such programs AlphaFold and ESMFold, this bottleneck has been reduced by several orders of magnitude, permitting protein structural comparisons of entire genomes within reasonable timeframes. MaizeGDB has leveraged this technological breakthrough by offering several new tools to accelerate protein structural comparisons between maize and other plants as well as human and yeast outgroups. MaizeGDB also offers bulk downloads of these comparative protein structure data, along with predicted functional annotation information. In this way, MaizeGDB is poised to assist maize researchers in assessing functional homology, gene model annotation quality, and other information unavailable to maize scientists even a few years ago.


Assuntos
Interface Usuário-Computador , Zea mays , Humanos , Zea mays/genética , Zea mays/metabolismo , Bases de Dados Genéticas , Biologia Computacional/métodos , Genoma de Planta , Anotação de Sequência Molecular , Genômica/métodos
5.
BMC Plant Biol ; 22(1): 107, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35260072

RESUMO

BACKGROUND: Sustainable production of high-quality feedstock has been of great interest in bioenergy research. Despite the economic importance, high temperatures and water deficit are limiting factors for the successful cultivation of switchgrass in semi-arid areas. There are limited reports on the molecular basis of combined abiotic stress tolerance in switchgrass, particularly the combination of drought and heat stress. We used transcriptomic approaches to elucidate the changes in the response of switchgrass to drought and high temperature simultaneously. RESULTS: We conducted solely drought treatment in switchgrass plant Alamo AP13 by withholding water after 45 days of growing. For the combination of drought and heat effect, heat treatment (35 °C/25 °C day/night) was imposed after 72 h of the initiation of drought. Samples were collected at 0 h, 72 h, 96 h, 120 h, 144 h, and 168 h after treatment imposition, total RNA was extracted, and RNA-Seq conducted. Out of a total of 32,190 genes, we identified 3912, as drought (DT) responsive genes, 2339 and 4635 as, heat (HT) and drought and heat (DTHT) responsive genes, respectively. There were 209, 106, and 220 transcription factors (TFs) differentially expressed under DT, HT and DTHT respectively. Gene ontology annotation identified the metabolic process as the significant term enriched in DTHT genes. Other biological processes identified in DTHT responsive genes included: response to water, photosynthesis, oxidation-reduction processes, and response to stress. KEGG pathway enrichment analysis on DT and DTHT responsive genes revealed that TFs and genes controlling phenylpropanoid pathways were important for individual as well as combined stress response. For example, hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyl transferase (HCT) from the phenylpropanoid pathway was induced by single DT and combinations of DTHT stress. CONCLUSION: Through RNA-Seq analysis, we have identified unique and overlapping genes in response to DT and combined DTHT stress in switchgrass. The combination of DT and HT stress may affect the photosynthetic machinery and phenylpropanoid pathway of switchgrass which negatively impacts lignin synthesis and biomass production of switchgrass. The biological function of genes identified particularly in response to DTHT stress could further be confirmed by techniques such as single point mutation or RNAi.


Assuntos
Adaptação Fisiológica/genética , Desidratação/genética , Resposta ao Choque Térmico/genética , Panicum/genética , Transcriptoma , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas
6.
Plant Cell Rep ; 36(1): 129-150, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27812750

RESUMO

KEY MESSAGE: Transcriptomes of two switchgrass genotypes representing the upland and lowland ecotypes will be key tools in switchgrass genome annotation and biotic and abiotic stress functional genomics. Switchgrass (Panicum virgatum L.) is an important bioenergy feedstock for cellulosic ethanol production. We report genome-wide transcriptome profiling of two contrasting tetraploid switchgrass genotypes, VS16 and AP13, representing the upland and lowland ecotypes, respectively. A total of 268 million Illumina short reads (50 nt) were generated, of which, 133 million were obtained in AP13 and the rest 135 million in VS16. More than 90% of these reads were mapped to the switchgrass reference genome (V1.1). We identified 6619 and 5369 differentially expressed genes in VS16 and AP13, respectively. Gene ontology and KEGG pathway analysis identified key genes that regulate important pathways including C4 photosynthesis, photorespiration and phenylpropanoid metabolism. A series of genes (33) involved in photosynthetic pathway were up-regulated in AP13 but only two genes showed higher expression in VS16. We identified three dicarboxylate transporter homologs that were highly expressed in AP13. Additionally, genes that mediate drought, heat, and salinity tolerance were also identified. Vesicular transport proteins, syntaxin and signal recognition particles were seen to be up-regulated in VS16. Analyses of selected genes involved in biosynthesis of secondary metabolites, plant-pathogen interaction, membrane transporters, heat, drought and salinity stress responses confirmed significant variation in the relative expression reflected in RNA-Seq data between VS16 and AP13 genotypes. The phenylpropanoid pathway genes identified here are potential targets for biofuel conversion.


Assuntos
Ecótipo , Perfilação da Expressão Gênica , Panicum/genética , Regulação para Baixo/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Genótipo , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes , Análise de Sequência de RNA , Transdução de Sinais/genética , Estresse Fisiológico/genética , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA