Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mar Drugs ; 16(1)2018 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-29342840

RESUMO

Marine biotoxin-contaminated seafood has caused thousands of poisonings worldwide this century. Given these threats, there is an increasing need for improved technologies that can be easily integrated into coastal monitoring programs. This study evaluates approaches for monitoring toxins associated with recurrent toxin-producing Alexandrium and Dinophysis blooms on Long Island, NY, USA, which cause paralytic and diarrhetic shellfish poisoning (PSP and DSP), respectively. Within contrasting locations, the dynamics of pelagic Alexandrium and Dinophysis cell densities, toxins in plankton, and toxins in deployed blue mussels (Mytilus edulis) were compared with passive solid-phase adsorption toxin tracking (SPATT) samplers filled with two types of resin, HP20 and XAD-2. Multiple species of wild shellfish were also collected during Dinophysis blooms and used to compare toxin content using two different extraction techniques (single dispersive and double exhaustive) and two different toxin analysis assays (liquid chromatography/mass spectrometry and the protein phosphatase inhibition assay (PP2A)) for the measurement of DSP toxins. DSP toxins measured in the HP20 resin were significantly correlated (R² = 0.7-0.9, p < 0.001) with total DSP toxins in shellfish, but were detected more than three weeks prior to detection in deployed mussels. Both resins adsorbed measurable levels of PSP toxins, but neither quantitatively tracked Alexandrium cell densities, toxicity in plankton or toxins in shellfish. DSP extraction and toxin analysis methods did not differ significantly (p > 0.05), were highly correlated (R² = 0.98-0.99; p < 0.001) and provided complete recovery of DSP toxins from standard reference materials. Blue mussels (Mytilus edulis) and ribbed mussels (Geukensia demissa) were found to accumulate DSP toxins above federal and international standards (160 ng g-1) during Dinophysis blooms while Eastern oysters (Crassostrea virginica) and soft shell clams (Mya arenaria) did not. This study demonstrated that SPATT samplers using HP20 resin coupled with PP2A technology could be used to provide early warning of DSP, but not PSP, events for shellfish management.


Assuntos
Dinoflagellida/química , Toxinas Marinhas/química , Frutos do Mar/análise , Frutos do Mar/parasitologia , Animais , Cromatografia Líquida/métodos , Monitoramento Ambiental/métodos , Mytilus edulis/parasitologia , Alimentos Marinhos/análise , Alimentos Marinhos/parasitologia , Água do Mar/parasitologia , Espectrometria de Massas em Tandem/métodos
2.
PLoS One ; 10(4): e0124148, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25894567

RESUMO

Diarrhetic Shellfish Poisoning (DSP) is a globally significant human health syndrome most commonly caused by dinoflagellates within the genus Dinophysis. While blooms of harmful algae have frequently been linked to excessive nutrient loading, Dinophysis is a mixotrophic alga whose growth is typically associated with prey availability. Consequently, field studies of Dinophysis and nutrients have been rare. Here, the temporal dynamics of Dinophysis acuminata blooms, DSP toxins, and nutrients (nitrate, ammonium, phosphate, silicate, organic compounds) were examined over four years within two New York estuaries (Meetinghouse Creek and Northport Bay). Further, changes in the abundance and toxicity of D. acuminata were assessed during a series of nutrient amendment experiments performed over a three year period. During the study, Dinophysis acuminata blooms exceeding one million cells L-1 were observed in both estuaries. Highly significant (p<0.001) forward stepwise multivariate regression models of ecosystem observations demonstrated that D. acuminata abundances were positively dependent on multiple environmental parameters including ammonium (p = 0.007) while cellular toxin content was positively dependent on ammonium (p = 0.002) but negatively dependent on nitrate (p<0.001). Nitrogen- (N) and phosphorus- (P) containing inorganic and organic nutrients significantly enhanced D. acuminata densities in nearly all (13 of 14) experiments performed. Ammonium significantly increased cell densities in 10 of 11 experiments, while glutamine significantly enhanced cellular DSP content in 4 of 5 experiments examining this compound. Nutrients may have directly or indirectly enhanced D. acuminata abundances as densities of this mixotroph during experiments were significantly correlated with multiple members of the planktonic community (phytoflagellates and Mesodinium). Collectively, this study demonstrates that nutrient loading and more specifically N-loading promotes the growth and toxicity of D. acuminata populations in coastal zones.


Assuntos
Dinoflagellida/crescimento & desenvolvimento , Dinoflagellida/metabolismo , Ecossistema , Estuários , Alimentos , Toxinas Marinhas/química , Nitrogênio/metabolismo , Humanos
3.
Anal Chim Acta ; 715: 71-9, 2012 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-22244169

RESUMO

We previously reported a solid-phase extraction (SPE) method for determination of the neurotoxin domoic acid (DA) in both seawater and phytoplankton by liquid chromatography-tandem mass spectrometry (LC-MS/MS) with the purpose of sample desalting without DA pre-concentration. In the present study, we optimized the SPE procedure with seawater and phytoplankton samples directly acidified with aqueous formic acid without addition of organic solvents, which allowed sample desalting and also 20-fold pre-concentration of DA in seawater and phytoplankton samples. In order to reduce MS contamination, a diverter valve was installed between LC and MS to send the LC eluant to waste, except for the 6-min elution window bracketing the DA retention time, which was sent to the MS. Reduction of the MS turbo gas temperature also helped to maintain the long-term stability of MS signal. Recoveries exceeded 90% for the DA-negative seawater and the DA-positive cultured phytoplankton samples spiked with DA. The SPE method for DA extraction and sample clean-up in seawater was extended to mammalian fluids and tissues with modification in order to accommodate the fluid samples with limited available volumes and the tissue extracts in aqueous methanol. Recoveries of DA from DA-exposed laboratory mammalian samples (amniotic fluid, cerebrospinal fluid, plasma, placenta, and brain) were above 85%. Recoveries of DA from samples (urine, feces, intestinal contents, and gastric contents) collected from field stranded marine mammals showed large variations and were affected by the sample status. The optimized SPE-LC-MS method allows determination of DA at trace levels (low pg mL(-1)) in seawater with/without the presence of phytoplankton. The application of SPE clean-up to mammalian fluids and tissue extracts greatly reduced the LC column degradation and MS contamination, which allowed routine screening of marine mammalian samples for confirmation of DA exposure and determination of fluid and tissue DA concentrations in experimental laboratory animals.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Ácido Caínico/análogos & derivados , Toxinas Marinhas/análise , Fitoplâncton/química , Água do Mar/química , Extração em Fase Sólida/métodos , Espectrometria de Massas em Tandem/métodos , Líquido Amniótico/química , Animais , Líquidos Corporais/química , Golfinhos/urina , Fezes/química , Feminino , Ácido Caínico/análise , Ratos , Ratos Sprague-Dawley , Leões-Marinhos/urina , Sensibilidade e Especificidade , Baleias/urina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA