Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Nano ; 18(19): 12187-12193, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38698541

RESUMO

The subnanometer distance between tip and sample in a scanning tunneling microscope (STM) enables the application of very large electric fields with a strength as high as ∼1 GV/m. This has allowed for efficient electrical driving of Rabi oscillations of a single spin on a surface at a moderate radiofrequency (RF) voltage on the order of tens of millivolts. Here, we demonstrate the creation of dressed states of a single electron spin localized in the STM tunnel junction by using resonant RF driving voltages. The read-out of these dressed states was achieved all electrically by a weakly coupled probe spin. Our work highlights the strength of the atomic-scale geometry inherent to the STM that facilitates the creation and control of dressed states, which are promising for the design of atomic scale quantum devices using individual spins on surfaces.

2.
Nano Lett ; 24(4): 1160-1167, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38237067

RESUMO

An unexplored material of copper boride has been realized recently in two-dimensional form at a (111) surface of the fcc copper crystal. Here, one-dimensional (1-D) boron growth was observed on the Cu(110) surface, as probed by atomically resolved scanning probe microscopy. The 1-D copper boride was composed of quasi-periodic atomic chains periodically aligned parallel to each other, as confirmed by Fourier transform analysis. The 1-D growth unexpectedly proceeded across surface steps in a self-assembled manner and extended over several 100 nm. The long-range formation of a 1-D quasi-periodic structure on a surface has been theoretically modeled as a 1-D quasi-crystal and the predicted conditions matched the structural parameters obtained by the experimental work here. The quasi-periodic 1-D copper boride system enabled a way to examine 1-D quasi-crystallinity on an actual material.

3.
Science ; 382(6666): 87-92, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37797000

RESUMO

Individual electron spins in solids are promising candidates for quantum science and technology, where bottom-up assembly of a quantum device with atomically precise couplings has long been envisioned. Here, we realized atom-by-atom construction, coherent operations, and readout of coupled electron-spin qubits using a scanning tunneling microscope. To enable the coherent control of "remote" qubits that are outside of the tunnel junction, we complemented each electron spin with a local magnetic field gradient from a nearby single-atom magnet. Readout was achieved by using a sensor qubit in the tunnel junction and implementing pulsed double electron spin resonance. Fast single-, two-, and three-qubit operations were thereby demonstrated in an all-electrical fashion. Our angstrom-scale qubit platform may enable quantum functionalities using electron spin arrays built atom by atom on a surface.

4.
ACS Nano ; 17(14): 14144-14151, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37406167

RESUMO

Scanning-tunneling microscopy (STM) combined with electron spin resonance (ESR) has enabled single-spin spectroscopy with nanoelectronvolt energy resolution and angstrom-scale spatial resolution, which allows quantum sensing and magnetic resonance imaging at the atomic scale. Extending this spectroscopic tool to a study of multiple spins, however, is nontrivial due to the extreme locality of the STM tunnel junction. Here we demonstrate double electron-electron spin resonance spectroscopy in an STM for two coupled atomic spins by simultaneously and independently driving them using two continuous-wave radio frequency voltages. We show the ability to drive and detect the resonance of a spin that is remote from the tunnel junction while read-out is achieved via the spin in the tunnel junction. Open quantum system simulations for two coupled spins reproduce all double-resonance spectra and further reveal a relaxation time of the remote spin that is longer by an order of magnitude than that of the local spin in the tunnel junction. Our technique can be applied to quantum-coherent multi-spin sensing, simulation, and manipulation in engineered spin structures on surfaces.

5.
Phys Rev Lett ; 130(10): 106002, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36962019

RESUMO

Unlike bulk counterparts, two-dimensional (2D) superconductors are sensitive to disorder. Here, we investigated superconductivity of Pb atomic layers formed on vicinal substrates to reveal how surface steps with an interval shorter than the coherence length ξ affect it. Electrical transport showed reduced critical temperature and enhanced critical magnetic field. Scanning tunneling microscopy exhibited vortices elongated along the steps, that is, Abrikosov-Josephson vortices squeezed normal to the steps due to the reduced ξ. These results demonstrate that steps work as disorder and vicinal substrates provide a unique platform to manipulate the degree of disorder on 2D superconductors.

6.
Rev Sci Instrum ; 90(1): 013704, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30709171

RESUMO

We characterized the performance of electrochemically etched bulk Fe and Ni tips as a probe of spin-polarized scanning tunneling microscopy (SP-STM). Through the observation of the striped contrast on the conical spin-spiral structure formed in Mn double layers on a W(110) substrate, the capability of both the tips to detect the magnetic signal was clarified. We also confirmed that the magnetized direction of the Fe and Ni tips can be flipped between the two out-of-plane directions by external magnetic fields. Our results demonstrate that the ex-situ prepared tips are reliable in SP-STM for the samples that are not susceptible to a stray magnetic field.

7.
Sci Rep ; 7(1): 13269, 2017 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-29038603

RESUMO

We report on experimental verification of the rotational type of chiral spin spirals in Mn thin films on a W(110) substrate using spin-polarized scanning tunneling microscopy (SP-STM) with a double-axis superconducting vector magnet. From SP-STM images using Fe-coated W tips magnetized to the out-of-plane and [001] directions, we found that both Mn mono- and double-layers exhibit cycloidal rotation whose spins rotate in the planes normal to the propagating directions. Our results agree with the theoretical prediction based on the symmetry of the system, supporting that the magnetic structures are driven by the interfacial Dzyaloshinskii-Moriya interaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA