Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
JCI Insight ; 7(15)2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35737458

RESUMO

Circulating monocytes have emerged as key regulators of the neuroinflammatory milieu in a number of neuropathological disorders. Ephrin type A receptor 4 (Epha4) receptor tyrosine kinase, a prominent axon guidance molecule, has recently been implicated in the regulation of neuroinflammation. Using a mouse model of brain injury and a GFP BM chimeric approach, we found neuroprotection and a lack of significant motor deficits marked by reduced monocyte/macrophage cortical infiltration and an increased number of arginase-1+ cells in the absence of BM-derived Epha4. This was accompanied by a shift in monocyte gene profile from pro- to antiinflammatory that included increased Tek (Tie2 receptor) expression. Inhibition of Tie2 attenuated enhanced expression of M2-like genes in cultured Epha4-null monocytes/macrophages. In Epha4-BM-deficient mice, cortical-isolated GFP+ monocytes/macrophages displayed a phenotypic shift from a classical to an intermediate subtype, which displayed reduced Ly6chi concomitant with increased Ly6clo- and Tie2-expressing populations. Furthermore, clodronate liposome-mediated monocyte depletion mimicked these effects in WT mice but resulted in attenuation of phenotype in Epha4-BM-deficient mice. This demonstrates that monocyte polarization not overall recruitment dictates neural tissue damage. Thus, coordination of monocyte proinflammatory phenotypic state by Epha4 is a key regulatory step mediating brain injury.


Assuntos
Lesões Encefálicas , Monócitos , Humanos , Lesões Encefálicas/metabolismo , Efrinas/metabolismo , Monócitos/metabolismo , Fenótipo , Receptor EphB2/metabolismo , Animais , Camundongos
2.
J Clin Invest ; 130(2): 1024-1035, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31689239

RESUMO

Leptomeningeal anastomoses or pial collateral vessels play a critical role in cerebral blood flow (CBF) restoration following ischemic stroke. The magnitude of this adaptive response is postulated to be controlled by the endothelium, although the underlying molecular mechanisms remain under investigation. Here we demonstrated that endothelial genetic deletion, using EphA4fl/fl/Tie2-Cre and EphA4fl/fl/VeCahderin-CreERT2 mice and vessel painting strategies, implicated EphA4 receptor tyrosine kinase as a major suppressor of pial collateral remodeling, CBF, and functional recovery following permanent middle cerebral artery occlusion. Pial collateral remodeling is limited by the crosstalk between EphA4-Tie2 signaling in vascular endothelial cells, which is mediated through p-Akt regulation. Furthermore, peptide inhibition of EphA4 resulted in acceleration of the pial arteriogenic response. Our findings demonstrate that EphA4 is a negative regulator of Tie2 receptor signaling, which limits pial collateral arteriogenesis following cerebrovascular occlusion. Therapeutic targeting of EphA4 and/or Tie2 represents an attractive new strategy for improving collateral function, neural tissue health, and functional recovery following ischemic stroke.


Assuntos
Isquemia Encefálica/metabolismo , Receptor EphA4/metabolismo , Receptor TIE-2/metabolismo , Transdução de Sinais , Acidente Vascular Cerebral/metabolismo , Remodelação Vascular , Animais , Isquemia Encefálica/genética , Camundongos , Camundongos Transgênicos , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor EphA4/genética , Receptor TIE-2/genética , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/patologia
3.
J Neuroinflammation ; 16(1): 210, 2019 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-31711546

RESUMO

BACKGROUND: The continuum of pro- and anti-inflammatory response elicited by traumatic brain injury (TBI) is suggested to play a key role in the outcome of TBI; however, the underlying mechanisms remain ill -defined. METHODS: Here, we demonstrate that using bone marrow chimeric mice and systemic inhibition of EphA4 receptor shifts the pro-inflammatory milieu to pro-resolving following acute TBI. RESULTS: EphA4 expression is increased in the injured cortex as early as 2 h post-TBI and on CX3CR1gfp-positive cells in the peri-lesion. Systemic inhibition or genetic deletion of EphA4 significantly reduced cortical lesion volume and shifted the inflammatory profile of peripheral-derived immune cells to pro-resolving in the damaged cortex. These findings were consistent with in vitro studies showing EphA4 inhibition or deletion altered the inflammatory state of LPS-stimulated monocyte/macrophages towards anti-inflammatory. Phosphoarray analysis revealed that EphA4 may regulate pro-inflammatory gene expression by suppressing the mTOR, Akt, and NF-κB pathways. Our human metadata analysis further demonstrates increased EPHA4 and pro-inflammatory gene expression, which correlates with reduced AKT concurrent with increased brain injury severity in patients. CONCLUSIONS: Overall, these findings implicate EphA4 as a novel mediator of cortical tissue damage and neuroinflammation following TBI.


Assuntos
Lesões Encefálicas Traumáticas/metabolismo , Córtex Cerebral/metabolismo , Encefalite/metabolismo , Receptor EphA4/metabolismo , Animais , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Lesões Encefálicas Traumáticas/patologia , Córtex Cerebral/patologia , Modelos Animais de Doenças , Encefalite/patologia , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Microglia/metabolismo , Microglia/patologia , Receptor EphA4/genética
4.
Brain Behav Immun ; 81: 617-629, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31351186

RESUMO

Increasing reports of pregnancy events leading to maternal microbiome dysbiosis (MMD) show strong correlates with atypical neurodevelopmental outcomes. However, the mechanism(s) driving microbiome-mediated behavioral dysfunction in offspring remain understudied. Here, we demonstrate the presence of a novel gut commensal bacterium strain, Lactobacillus murinus HU-1, was sufficient to rescue behavioral deficits and brain region-specific microglial activationobserved in MMD-reared murine offspring. We furtheridentified a postnatal window of susceptibility that could prevent social impairments with timed maternal administration of the symbiotic bacterium. Moreover, MMD increased expression of microglial senescence genes, Trp53 and Il1ß, and Cx3cr1 protein in the prefrontal cortex, which correlated with dysfunctional modeling of synapses and accompanied dysbiosis-induced microglial activation. MMD male offspring harboring Lactobacillus murinus HU-1 or lacking Cx3cr1 showed amelioration of these effects. The current study describes a new avenue of influence by which maternally transferred Lactobacillus drives proper development of social behavior in the offspring through microglia-specific regulation of Cx3cr1 signaling.


Assuntos
Lactobacillus/metabolismo , Microbiota/fisiologia , Transtornos do Neurodesenvolvimento/microbiologia , Animais , Transtorno do Espectro Autista/microbiologia , Receptor 1 de Quimiocina CX3C/metabolismo , Disbiose/microbiologia , Feminino , Microbioma Gastrointestinal/fisiologia , Interleucina-1beta/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/fisiologia , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/microbiologia , Gravidez , Comportamento Social , Proteína Supressora de Tumor p53/metabolismo
5.
Sci Rep ; 9(1): 8564, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31189983

RESUMO

The peripheral immune system is a major regulator of the pathophysiology associated with traumatic brain injury (TBI). While age-at-injury influences recovery from TBI, the differential effects on the peripheral immune response remain unknown. Here, we investigated the effects of TBI on gene expression changes in murine whole blood using RNAseq analysis, gene ontology and network topology-based key driver analysis. Genome-wide comparison of CCI-injured peripheral whole blood showed a significant increase in genes involved in proteolysis and oxidative-reduction processes in juvenile compared to adult. Conversely, a greater number of genes, involved in migration, cytokine-mediated signaling and adhesion, were found reduced in CCI-injured juvenile compared to CCI-injured adult immune cells. Key driver analysis also identified G-protein coupled and novel pattern recognition receptor (PRR), P2RY10, as a central regulator of these genes. Lastly, we found Dectin-1, a c-type lectin PRR to be reduced at the protein level in both naïve neutrophils and on infiltrating immune cells in the CCI-injured juvenile cortex. These findings demonstrate a distinct peripheral inflammatory profile in juvenile mice, which may impact the injury and repair response to brain trauma.


Assuntos
Lesões Encefálicas Traumáticas/imunologia , Córtex Cerebral/imunologia , RNA-Seq , Transcriptoma/imunologia , Envelhecimento , Animais , Lesões Encefálicas Traumáticas/patologia , Córtex Cerebral/patologia , Estudo de Associação Genômica Ampla , Lectinas Tipo C/imunologia , Camundongos , Receptores Purinérgicos P2/imunologia
6.
J Neurosci ; 38(45): 9618-9634, 2018 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-30242049

RESUMO

Although age-at-injury influences chronic recovery from traumatic brain injury (TBI), the differential effects of age on early outcome remain understudied. Using a male murine model of moderate contusion injury, we investigated the underlying mechanism(s) regulating the distinct response between juvenile and adult TBI. We demonstrate similar biomechanical and physical properties of naive juvenile and adult brains. However, following controlled cortical impact (CCI), juvenile mice displayed reduced cortical lesion formation, cell death, and behavioral deficits at 4 and 14 d. Analysis of high-resolution laser Doppler imaging showed a similar loss of cerebral blood flow (CBF) in the ipsilateral cortex at 3 and 24 h post-CCI, whereas juvenile mice showed enhanced subsequent restoration at 2-4 d compared with adults. These findings correlated with reduced blood-brain barrier (BBB) disruption and increased perilesional vessel density. To address whether an age-dependent endothelial cell (EC) response affects vessel stability and tissue outcome, we magnetically isolated CD31+ ECs from sham and injured cortices and evaluated mRNA expression. Interestingly, we found increased transcripts for BBB stability-related genes and reduced expression of BBB-disrupting genes in juveniles compared with adults. These differences were concomitant with significant changes in miRNA-21-5p and miR-148a levels. Accompanying these findings was robust GFAP immunoreactivity, which was not resolved by day 35. Importantly, pharmacological inhibition of EC-specific Tie2 signaling abolished the juvenile protective effects. These findings shed new mechanistic light on the divergent effects that age plays on acute TBI outcome that are both spatial and temporal dependent.SIGNIFICANCE STATEMENT Although a clear "window of susceptibility" exists in the developing brain that could deter typical developmental trajectories if exposed to trauma, a number of preclinical models have demonstrated evidence of early recovery in younger patients. Our findings further demonstrate acute neuroprotection and improved restoration of cerebral blood flow in juvenile mice subjected to cortical contusion injury compared with adults. We also demonstrate a novel role for endothelial cell-specific Tie2 signaling in this age-related response, which is known to promote barrier stability, is heightened in the injured juvenile vasculature, and may be exploited for therapeutic interventions across the age spectrum following traumatic brain injury.


Assuntos
Barreira Hematoencefálica/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Córtex Cerebral/metabolismo , Circulação Cerebrovascular/fisiologia , Receptor TIE-2/metabolismo , Fatores Etários , Animais , Células Cultivadas , Masculino , Camundongos
7.
J Immunol ; 199(10): 3547-3558, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-28993512

RESUMO

Traumatic and nontraumatic brain injury results from severe disruptions in the cellular microenvironment leading to massive loss of neuronal populations and increased neuroinflammation. The progressive cascade of secondary events, including ischemia, inflammation, excitotoxicity, and free-radical release, contribute to neural tissue damage. NLRX1 is a member of the NLR family of pattern recognition receptors and is a potent negative regulator of several pathways that significantly modulate many of these events. Thus, we hypothesized that NLRX1 limits immune system signaling in the brain following trauma. To evaluate this hypothesis, we used Nlrx1-/- mice in a controlled cortical impact (CCI) injury murine model of traumatic brain injury (TBI). In this article, we show that Nlrx1-/- mice exhibited significantly larger brain lesions and increased motor deficits following CCI injury. Mechanistically, our data indicate that the NF-κB signaling cascade is significantly upregulated in Nlrx1-/- animals. This upregulation is associated with increased microglia and macrophage populations in the cortical lesion. Using a mouse neuroblastoma cell line (N2A), we also found that NLRX1 significantly reduced apoptosis under hypoxic conditions. In human patients, we identify 15 NLRs that are significantly dysregulated, including significant downregulation of NLRX1 in brain injury following aneurysm. We further demonstrate a concurrent increase in NF-κB signaling that is correlated with aneurysm severity in these human subjects. Together, our data extend the function of NLRX1 beyond its currently characterized role in host-pathogen defense and identify this highly novel NLR as a significant modulator of brain injury progression.


Assuntos
Lesões Encefálicas/imunologia , Córtex Cerebral/imunologia , Hipóxia/imunologia , Aneurisma Intracraniano/imunologia , Microglia/imunologia , Proteínas Mitocondriais/metabolismo , Animais , Apoptose , Lesões Encefálicas/genética , Linhagem Celular Tumoral , Microambiente Celular , Córtex Cerebral/patologia , Regulação da Expressão Gênica , Humanos , Hipóxia/genética , Aneurisma Intracraniano/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Mitocondriais/genética , NF-kappa B/metabolismo , Estudos Retrospectivos , Transdução de Sinais
8.
PLoS One ; 11(7): e0159930, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27467069

RESUMO

Leptomeningeal anastomoses play a critical role in regulating vascular re-perfusion following obstruction, however, the mechanisms regulating their development remains under investingation. Our current findings indicate that EphA4 receptor is a novel negative regulator of collaterogenesis. We demonstrate that EphA4 is highly expressed on pial arteriole collaterals at post-natal day (P) 1 and 7, then significantly reduced by P21. Endothelial cell (EC)-specific loss of EphA4, EphA4f/f/Tie2::Cre (KO), resulted in an increase in the density but not diameter of pial collaterals compared to WT mice. ECs isolated from KO mice displayed a 3-fold increase in proliferation, enhanced migration, tube formation and elevated levels of phospho(p)-Akt compared to WT ECs. Attenuating p-Akt, using LY294002, reduced the proliferative and migration effects in the KO ECs. RNAseq analysis also revealed altered expression patterns for genes that regulate cell proliferation, vascular development, extracellular matrix and immune-mediate responses, namely MCP-1, MMP2 and angiopoietin-1. Lastly, we show that induction of hindlimb ischemia resulted in accelerated re-perfusion, collateral remodeling and reduced tissue necrosis in the absence of EC-specific EphA4 compared to WT mice. These findings demonstrate a novel role for EphA4 in the early development of the pial collateral network and suggests a role in regulating vascular remodeling after obstruction.


Assuntos
Veias Cerebrais/fisiopatologia , Endotélio Vascular/fisiopatologia , Membro Posterior/irrigação sanguínea , Isquemia/fisiopatologia , Receptor EphA4/fisiologia , Animais , Cromonas , Endotélio Vascular/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Morfolinas , Perfusão , Receptor EphA4/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA