RESUMO
BACKGROUND: Helicobacter pylori (H. pylori) infects over 50% of the global population and is a significant risk factor for gastric cancer. The pathogenicity of H. pylori is primarily attributed to virulence factors such as vacA. Timely and accurate identification, along with genotyping of H. pylori virulence genes, are essential for effective clinical management and controlling its prevalence. METHODS: In this study, we developed a dual-target RAA-LFD assay for the rapid, visual detection of H. pylori genes (16s rRNA, ureA, vacA m1/m2), using recombinase aided amplification (RAA) combined with lateral flow dipstick (LFD) methods. Both 16s rRNA and ureA were selected as identification genes to ensure reliable detection accuracy. RESULTS: A RAA-LFD assay was developed to achieve dual-target amplification at a stable 37 °C within 20 min, followed by visualization using the lateral flow dipstick (LFD). The whole process, from amplification to results, took less than 30 min. The 95 % limit of detection (LOD) for 16 s rRNA and ureA, vacA m1, vacA m2 were determined as 3.8 × 10-2 ng/µL, 5.8 × 10-2 ng/µL and 1.4 × 10-2 ng/µL, respectively. No cross-reaction was observed in the detection of common pathogens including Escherichia coli, Klebsiella pneumoniae, Enterococcus faecalis, Staphylococcus aureus, Pseudomonas aeruginosa, and Bacillus subtilis, showing the assay's high specificity. In the evaluation of the clinical performance of the RAA-LFD assay. A total of 44 gastric juice samples were analyzed, immunofluorescence staining (IFS) and quantitative polymerase chain reaction (qPCR) were used as reference methods. The RAA-LFD results for the 16s rRNA and ureA genes showed complete agreement with qPCR findings, accurately identifying H. pylori infection as confirmed by IFS in 10 out of the 44 patients. Furthermore, the assay successfully genotyped vacA m1/m2 among the positive samples, showing complete agreement with qPCR results and achieving a kappa (κ) value of 1.00. CONCLUSION: The dual-target RAA-LFD assay developed in this study provides a rapid and reliable method for detecting and genotyping H. pylori within 30 min, minimizing dependency on sophisticated laboratory equipment and specialized personnel. Clinical validation confirms its efficacy as a promising tool for effectively control of its prevalence and aiding in the precise treatment of H. pylori-associated diseases.
Assuntos
Proteínas de Bactérias , Helicobacter pylori , Helicobacter pylori/genética , Helicobacter pylori/isolamento & purificação , Proteínas de Bactérias/genética , Humanos , RNA Ribossômico 16S/genética , Infecções por Helicobacter/diagnóstico , Infecções por Helicobacter/microbiologia , Técnicas de Amplificação de Ácido Nucleico/métodosRESUMO
The widespread spread of bacterial antimicrobial resistance (AMR) and multidrug-resistant bacteria poses a significant threat to global public health. Traditional methods for detecting bacterial AMR are simple, reproducible, and intuitive, requiring long time incubation and high labor intensity. To quickly identify and detect bacterial AMR is urgent for clinical treatment to reduce mortality rate, and many new methods and technologies were required to be developed. This review summarizes the current phenotypic and genotypic detection methods for bacterial AMR. Phenotypic detection methods mainly include antimicrobial susceptibility tests, while genotypic detection methods have higher sensitivity and specificity and can detect known or even unknown drug resistance genes. However, most of the current tests are either genotypic or phenotypic and rarely combined. Combining the advantages of phenotypic and genotypic methods, combined with the joint application of multiple rapid detection methods may be the trend for future AMR testing. Driven by rapid diagnostic technology, big data analysis, and artificial intelligence, detection methods of bacterial AMR are expected to constantly develop and innovate. Adopting rational detection methods and scientific data analysis can better address the challenges of bacterial AMR and ensure human health and social well-being.
Assuntos
Antibacterianos , Bactérias , Farmacorresistência Bacteriana , Genótipo , Testes de Sensibilidade Microbiana , Saúde Única , Fenótipo , Humanos , Antibacterianos/farmacologia , Bactérias/genética , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Farmacorresistência Bacteriana/genética , Infecções Bacterianas/microbiologia , Infecções Bacterianas/diagnóstico , Infecções Bacterianas/tratamento farmacológico , Farmacorresistência Bacteriana Múltipla/genéticaRESUMO
The anti-PD-L1 and its bispecific antibodies have exhibited durable antitumor immunity but still elicit immunosuppression mainly caused by tumor-derived exosomes (TDEs), leading to difficulty in clinical transformation. Herein, engineered Escherichia coli Nissle 1917 (EcN) coexpressing anti-PD-L1 and anti-CD9 nanobodies (EcN-Nb) are developed and decorated with zinc-based metal-organic frameworks (MOFs) loaded with indocyanine green (ICG), to generate EcN-Nb-ZIF-8CHO-ICG (ENZC) for spatiotemporal lysis of bacteria for immunotherapy. The tumor-homing hybrid system can specifically release nanobodies in response to near-infrared (NIR) radiation, thereby targeting TDEs and changing their biological distribution, remodeling tumor-associated macrophages to M1 states, activating more effective and cytotoxic T lymphocytes, and finally, leading to the inhibition of tumor proliferation and metastasis. Altogether, the microfluidic-enabled MOF-modified engineered probiotics target TDEs and activate the antitumor immune response in a spatiotemporally manipulated manner, offering promising TDE-targeted immune therapy.
Assuntos
Exossomos , Estruturas Metalorgânicas , Probióticos , Anticorpos de Domínio Único , Exossomos/metabolismo , Exossomos/imunologia , Exossomos/química , Animais , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/imunologia , Camundongos , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Humanos , Verde de Indocianina/química , Escherichia coli/genética , Imunoterapia , Proliferação de Células/efeitos dos fármacos , Neoplasias/terapia , Neoplasias/imunologia , Neoplasias/patologia , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/química , Antígeno B7-H1/imunologia , Antígeno B7-H1/metabolismo , Antígeno B7-H1/antagonistas & inibidoresRESUMO
Platelet-derived extracellular vesicles (PEVs) showing great potential in wound healing have attracted increasing attention recently. Nondestructive isolation and effective utilization strategies are highly conducive for PEVs developing into recognized therapeutic entities. Here, we present an efficient strategy for PEV isolation and bacterial infected wound healing based on self-assembled DNA microflowers. First, DNA microflowers are prepared using rolling circle amplification. Then, the hydrophobic interaction between cholesteryl modified on DNA microflowers and the phospholipid bilayer membrane of PEVs leads to the formation of a network structure with improved mechanical strength and the separation of PEVs from biological samples. Finally, controlled release of PEVs is achieved through bacterial-induced hydrogel degradation. In vitro experiments demonstrate the obtained DNA hydrogel with good cytocompatibility and therapeutic potential. Taken together, the DNA microflower-based hydrogels with bioadhesive, self-healing, tunable mechanical properties and bacteria-responsive behavior offer substantial potential for EV isolation and wound healing.
Assuntos
Plaquetas , DNA , Vesículas Extracelulares , Hidrogéis , Cicatrização , Vesículas Extracelulares/química , Cicatrização/efeitos dos fármacos , DNA/química , Plaquetas/metabolismo , Humanos , Hidrogéis/química , Hidrogéis/farmacologia , Animais , CamundongosRESUMO
Drug-resistant bacterial infections pose a serious threat to human health; thus, there is an increasingly growing demand for nonantibiotic strategies to overcome drug resistance in bacterial infections. Mild photothermal therapy (PTT), as an attractive antibacterial strategy, shows great potential application due to its good biocompatibility and ability to circumvent drug resistance. However, its efficiency is limited by the heat resistance of bacteria. Herein, Cu2O@MoS2, a nanocomposite, was constructed by the in situ growth of Cu2O nanoparticles (NPs) on the surface of MoS2 nanosheets, which provided a controllable photothermal therapeutic effect of MoS2 and the intrinsic catalytic properties of Cu2O NPs, achieving a synergistic effect to eradicate multidrug-resistant bacteria. Transcriptome sequencing (RNA-seq) results revealed that the antibacterial process was related to disrupting the membrane transport system, phosphorelay signal transduction system, oxidative stress response system, as well as the heat response system. Animal experiments indicated that Cu2O@MoS2 could effectively treat wounds infected with methicillin-resistant Staphylococcus aureus. In addition, satisfactory biocompatibility made Cu2O@MoS2 a promising antibacterial agent. Overall, our results highlight the Cu2O@MoS2 nanocomposite as a promising solution to combating resistant bacteria without inducing the evolution of antimicrobial resistance.
Assuntos
Antibacterianos , Cobre , Dissulfetos , Raios Infravermelhos , Staphylococcus aureus Resistente à Meticilina , Testes de Sensibilidade Microbiana , Molibdênio , Nanocompostos , Molibdênio/química , Molibdênio/farmacologia , Dissulfetos/química , Dissulfetos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Cobre/química , Cobre/farmacologia , Nanocompostos/química , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Animais , Camundongos , Terapia Fototérmica , HumanosRESUMO
[This corrects the article DOI: 10.1371/journal.pone.0103022.].
RESUMO
PURPOSE: Immune checkpoint inhibitors (ICIs) in combination with chemotherapy have showed its benefits in clinical studies, and here we conducted a further evaluation on the safety and efficacy of this treatment strategy. METHODS: A systematic literature review was conducted in PubMed, Embase and Cochrane Library to identify clinical studies on ICIs and chemotherapy for metastatic breast cancer. The primary efficacy endpoints were progression-free survival (PFS) and overall survival (OS), and adverse events (AEs) were analyzed. Random or fixed effects models were used to estimate pooled Hazard ratio (HR), odds ratio (OR) and the data of 95% confidence interval (CI) depend on the Heterogeneity. Cochrane risk assessment tool was used to assess risk of bias. We also drew forest plots and funnel plots, respectively. RESULTS: Seven studies with intend-to-treat (ITT) population for 3255 patients were analyzed. ICIs pooled therapy showed clinical benefits compared with chemotherapy alone, improving PFS (HR = 0.81, 95% CI: 0.74-0.90) of patients with metastatic triple negative breast cancer (mTNBC), especially in patients with PD-L1-positive tumors. However, it had no effect on OS (HR = 0.92, 95% CI 0.85-1.01). Besides, mTNBC patients received pooled therapy were less frequently to have AEs (OR = 1.30, 95% CI: 1.09-1.54). In patients with metastatic Human Epidermal Growth Factor Receptor 2 (HER2) negative breast cancer, pooled therapy showed no benefit for PFS (HR = 0.80, 95% CI: 0.50-1.28) and OS (HR = 0.87, 95% CI: 0.48-1.58). CONCLUSION: Pooled therapy had improved PFS in mTNBC patients, especially in patients with PD-L1-positive tumors, and it was less likely to cause grade ≥ 3 AEs.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias da Mama , Inibidores de Checkpoint Imunológico , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/efeitos adversos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/mortalidade , Feminino , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Intervalo Livre de Progressão , Metástase NeoplásicaRESUMO
Objective: The purpose of this study was to evaluate the association between the single nucleotide polymorphisms (SNPs) (EGR3 rs1996147; EGR4 rs3813226, rs6747506; ERBB3 rs2292238; and ERBB4 rs707284, rs7560730) and the risk of schizophrenia (SZ) in a Chinese population. Materials and Methods: We conducted a case-control study, including 248 patients with SZ and 236 healthy controls matched for age and sex. The Mass-array platform was used to detect all the genotypes of the SNPs. Results: The results revealed that the EGR3 rs1996147 AA genotype was associated with borderline decreased SZ risk (AA vs. GG: adjusted OR = 0.43, 95% CI: 0.18-1.02, p = 0.06). However, no significant correlation was found between the other SNPs and overall SZ risk. Subgroup analysis also failed to show any significant association between all SNPs and the risk of SZ. Conclusion: In summary, this study revealed that the EGR3 rs1996147 AA genotype was associated with a borderline risk for SZ.
Assuntos
Povo Asiático , Proteína 3 de Resposta de Crescimento Precoce , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Esquizofrenia , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Alelos , Povo Asiático/genética , Estudos de Casos e Controles , China/epidemiologia , Proteína 3 de Resposta de Crescimento Precoce/genética , População do Leste Asiático , Frequência do Gene/genética , Predisposição Genética para Doença/genética , Genótipo , Polimorfismo de Nucleotídeo Único/genética , Receptor ErbB-4/genética , Fatores de Risco , Esquizofrenia/genéticaRESUMO
Breast cancer risk have been discussed to be associated with polymorphisms in genes as well as abnormal DNA damage repair function. This study aims to assess the relationship between genes single nucleotide polymorphisms (SNPs) related to DNA damage repair and female breast cancer risk in Chinese population. A case-control study containing 400 patients and 400 healthy controls was conducted. Genotype was identified using the sequence MassARRAY method and expression of estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor-2 (HER-2) in tumor tissues was analyzed by immunohistochemistry assay. The results revealed that ATR rs13091637 decreased breast cancer risk influenced by ER, PR (CT/TT vs. CC: adjusted odds ratio [OR] = 1.54, 95% confidence interval [CI]: 1.04-2.27, p = 0.032; CT/TT vs. CC: adjusted OR = 1.63, 95%CI: 1.14-2.35, p = 0.008) expression. Stratified analysis revealed that PALB2 rs16940342 increased breast cancer risk in response to menstrual status (AG/GG vs. AA: adjusted OR = 1.72, 95%CI: 1.13-2.62, p = 0.011) and age of menarche (AG/GG vs. AA: adjusted OR = 1.54, 95%CI: 1.03-2.31, p = 0.037), whereas ATM rs611646 and Ku70 rs132793 were associated with reduced breast cancer risk influenced by menarche (GA/AA vs. GG: adjusted OR = 0.50, 95%CI: 0.30-0.95, p = 0.033). In a summary, PALB2 rs16940342, ATR rs13091637, ATM rs611646, and Ku70 rs132793 were associated with breast cancer risk.
Assuntos
Proteínas Mutadas de Ataxia Telangiectasia , Neoplasias da Mama , Reparo do DNA , Predisposição Genética para Doença , Autoantígeno Ku , Polimorfismo de Nucleotídeo Único , Receptores de Progesterona , Humanos , Feminino , Neoplasias da Mama/genética , Reparo do DNA/genética , Pessoa de Meia-Idade , Proteínas Mutadas de Ataxia Telangiectasia/genética , Estudos de Casos e Controles , Adulto , Autoantígeno Ku/genética , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Receptor ErbB-2/genética , Dano ao DNA/genética , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Proteína do Grupo de Complementação N da Anemia de Fanconi/genética , Fatores de RiscoRESUMO
BACKGROUND: Studies have shown that many exosomal microRNAs (miRNAs) can be used as non-invasive biomarkers of lung cancer, but their diagnostic and prognostic values need to be further clarified. METHODS: We conducted a systematic literature search in Web of Science, PubMed, and ScienceDirect databases, obtained relevant articles and extracted data, and used statistical methods and statistical software to comprehensively evaluate the diagnostic and prognostic value of exosomal miRNAs in lung cancer. REGISTRATION NUMBER: PROSPERO CRD42023447398. RESULTS: In terms of diagnosis, two exosomal miRNAs (miR-486-5p and miR-451a) were reported with the highest frequency in lung cancer patients, both of which had good diagnostic value. Compared with the control group, the pooled sensitivities of miR-486-5p and miR-451a were 0.80 (95% CI: 0.73-0.86) and 0.76 (95% CI: 0.60-0.87), specificities: 0.93 (95% CI: 0.63-0.99) and 0.85 (95% CI: 0.72-0.92), and AUCs: 0.85 (95% CI: 0.81-0.88) and 0.88 (95% CI: 0.84-0.90), for the respective miRNAs. For prognosis, in lung cancer patients with abnormally expressed exosomal miRNAs, miR-1290 was associated with PFS outcome; miR-382, miR-1246, miR-23b-3p, miR-21-5p, and miR-10b-5p were associated with OS outcome; miR-21 and miR-4257 were associated with DFS outcome; miR-125a-3p and miR-625-5p were associated with PFS and OS outcomes; miR-216b and miR-451a were associated with OS and DFS outcomes. CONCLUSIONS: Exosomal miRNAs are valuable biomarkers in lung cancer patients. Exosomal miR-486-5p and miR-451a can be used as new diagnostic biomarkers for lung cancer. Dysregulated exosomal miRNAs could serve as indicators of survival outcomes in lung cancer patients.
Assuntos
Biomarcadores Tumorais , Exossomos , Neoplasias Pulmonares , MicroRNAs , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , MicroRNAs/genética , Exossomos/genética , Exossomos/metabolismo , Prognóstico , Biomarcadores Tumorais/genéticaRESUMO
Cuproptosis has drawn enormous attention in antitumor material fields; however, the responsive activation of cuproptosis against tumors using nanomaterials with high atom utilization is still challenging. Herein, a copper-based nanoplatform consisting of acid-degradable copper hydride (CuH) nanoparticles was developed via a microfluidic synthesis. After coating with tumor-targeting hyaluronic acid (HA), the nanoplatform denoted as HA-CuH-PVP (HCP) shows conspicuous damage toward tumor cells by generating Cu+ and hydrogen (H2) simultaneously. Cu+ can induce apoptosis by relying on Fenton-like reactions and lead to cuproptosis by causing mitochondrial protein aggregation. Besides, the existence of H2 can enhance both cell death types by causing mitochondrial dysfunction and intracellular redox homeostatic disorders. In vivo experimental results further exhibit the desirable potential of HCP for killing tumor cells and inhibiting lung metastases, which will broaden the horizons of designing copper-based materials triggering apoptosis and cuproptosis for better antitumor efficacy.
Assuntos
Cobre , Nanopartículas , Microfluídica , Apoptose , Ácido Hialurônico , HidrogênioRESUMO
Tumor whole cell, carrying a complete set of tumor-associated antigens and tumor-specific antigens, has shown great potential in the construction of tumor vaccines but is hindered by the complex engineering means and limited efficacy to cause immunity. Herein, we provided a strategy for the self-mineralization of autologous tumor cells with palladium ions in microfluidic droplets, which endowed the engineered cells with both immune and catalytic functions, to establish a bioorthogonally catalytic tumor whole-cell vaccine. This vaccine showed strong inhibition both in the occurrence and recurrence of tumor by invoking the immediate antitumor immunity and building a long-term immunity.
Assuntos
Vacinas Anticâncer , Neoplasias , Humanos , Microfluídica , Imunoterapia , Neoplasias/terapia , Antígenos de NeoplasiasRESUMO
Employing tumor whole cells for tumor immunotherapy is a promising tumor therapy proposed in the early stage, but its therapeutic efficacy is weakened by the methods of eliminating pathogenicity and the mass ratio of the effective antigen carried by itself. Here, by adding gold ion to live cancer cells in the microfluidic droplets, this work obtains dead tumor whole cells with NIR-controlled catalytic ability whose pathogenicity is removed while plenary tumor antigens, major structure, and homing ability are reserved. The engineered tumor cell (Cell-Au) with the addition of prodrug provides 1O2 in an O2-free Russell mechanism, which serves better in a hypoxic tumor microenvironment. This tumor whole-cell catalytic vaccine (TWCV) promotes the activation of dendritic cells and the transformation of macrophages into tumor suppressor phenotype. In 4T1 tumor-bearing mice, the Cell-Au-based vaccine supports the polarization of cytotoxicity T cells, resulting in tumor eradication and long-term animal survival. Compared with antigen vaccines or adoptive cell therapy which takes months to obtain, this TWCV can be prepared in just a few days with satisfactory immune activation and tumor therapeutic efficacy, which provides an alternative way for the preparation of personalized tumor vaccines across tumor types and gives immunotherapy a new path.
Assuntos
Vacinas Anticâncer , Ouro , Imunoterapia , Animais , Ouro/química , Imunoterapia/métodos , Camundongos , Linhagem Celular Tumoral , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/química , Camundongos Endogâmicos BALB C , Catálise , Feminino , Microambiente Tumoral/imunologia , Nanopartículas Metálicas/química , Células Dendríticas/imunologia , Humanos , Neoplasias/terapia , Neoplasias/imunologia , Neoplasias/patologiaRESUMO
Recent innovations in nanomaterials inspire abundant novel tumor-targeting CRISPR-based gene therapies. However, the therapeutic efficiency of traditional targeted nanotherapeutic strategies is limited by that the biomarkers vary in a spatiotemporal-dependent manner with tumor progression. Here, we propose a self-amplifying logic-gated gene editing strategy for gene/H2O2-mediated/starvation multimodal cancer therapy. In this approach, a hypoxia-degradable covalent-organic framework (COF) is synthesized to coat a-ZIF-8 in which glucose oxidase (GOx) and CRISPR system are packaged. To intensify intracellular redox dyshomeostasis, DNAzymes which can cleave catalase mRNA are loaded as well. When the nanosystem gets into the tumor, the weakly acidic and hypoxic microenvironment degrades the ZIF-8@COF to activate GOx, which amplifies intracellular H+ and hypoxia, accelerating the nanocarrier degradation to guarantee available CRISPR plasmid and GOx release in target cells. These tandem reactions deplete glucose and oxygen, leading to logic-gated-triggered gene editing as well as synergistic gene/H2O2-mediated/starvation therapy. Overall, this approach highlights the biocomputing-based CRISPR delivery and underscores the great potential of precise cancer therapy.
RESUMO
Breast cancer (BC) is the most commonly diagnosed malignant tumour in females worldwide. Although remarkable advances in early detection and treatment strategies have led to decreased mortality, recurrence and metastasis remain the major causes of cancer death in BC patients. Increasing evidence has demonstrated that circular RNAs (circRNAs) play critical roles in cancer progression. However, the detailed biological functions and molecular mechanisms of circRNAs in BC are unclear. The aim of this study was to investigate the possible role of circRNAs in the progression of BC. Differentially expressed circRNAs in BC were identified by integrating breast tumour-associated somatic CNV data and circRNA high-throughput sequencing. Aberrant hsa_circ_0007990 expression and host gene copy number were detected in BC cell lines via quantitative polymerase chain reaction (qPCR). The expression level of hsa_circ_0007990 in BC tissues was validated by in situ hybridization (ISH). Loss- and gain-of-function experiments were performed in vitro and in vivo, respectively, to explore the potential biological function of hsa_circ_0007990 in BC. The underlying mechanisms of hsa_circ_0007990 were investigated through MS2 RNA pull-down, RNA immunoprecipitation, RNA fluorescence in situ hybridization, immunofluorescence, chromatin immunoprecipitation and luciferase reporter assays. The levels of hsa_circ_0007990 were elevated in BC tissues and cell lines, an effect that was partly due to host gene copy number gains. Functional assays showed that hsa_circ_0007990 promoted BC cell growth. Mechanistically, hsa_circ_0007990 could bind to YBX1 and inhibit its degradation by preventing ubiquitin/proteasome-dependent degradation, thus enhancing the expression of the cell cycle-associated gene E2F1. Rescue experiments suggested that hsa_circ_0007990 promoted BC progression through YBX1. In general, our study demonstrated that hsa_circ_0007990 modulates the ubiquitination and degradation of YBX1 protein and further regulates E2F1 expression to promote BC progression. We explored the possible function and molecular mechanism of hsa_circ_0007990 in BC and identified a novel candidate target for the treatment of BC.