Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Top Curr Chem (Cham) ; 382(4): 31, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39382816

RESUMO

In recent years, the near-infrared (NIR) light-emitting materials have attracted increasing attention due to the broad application prospects in the fields of military industry, aerospace, lighting, display and wearable devices. As the transition metal complexes, platinum(II) complexes have been shown to emit luminescence efficiently in NIR organic light-emitting diodes because of the unique d8 electron structure. This structure ensures that the platinum(II) complex molecules exhibit a high planarity, variety of excited states, and strong intermolecular interactions. This review summarizes the research progress of deep red to NIR organic light-emitting materials based on platinum(II) complexes in recent years and provides a certain reference for the further design and synthesis of NIR platinum(II) complex luminescent materials with superior performance.


Assuntos
Complexos de Coordenação , Platina , Platina/química , Complexos de Coordenação/química , Raios Infravermelhos , Substâncias Luminescentes/química , Luminescência , Compostos Organoplatínicos/química , Compostos Organoplatínicos/síntese química
2.
Science ; 385(6714): 1173-1174, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39265012
3.
RSC Adv ; 14(40): 29588-29594, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39297043

RESUMO

The Ritter reaction is the most attractive method for synthesizing amides, and various acids have been used to promote this reaction. Compared to these acids, Fe(NO3)3·9H2O is less toxic and costly, and it shows relatively high Lewis acidity and great catalytic activity. In this study, a simple and efficient protocol involving Fe(NO3)3·9H2O as an additive for the synthesis of amides was developed. Various secondary alcohols could be reacted with CH3CN to obtain their corresponding products, with CH3CN being used as a reactant and solvent. This protocol was found to be applicable to a wide range of alcohols and nitrile substrates. In general, it was found that substrates containing electron-donating-groups offered the corresponding amides in good to excellent yields, while those with electron-withdrawing groups offered low to moderate yields. Meanwhile, this approach was scalable to the gram level, offering an attractive opportunity for further application in organic synthesis.

4.
ACS Appl Mater Interfaces ; 16(36): 47751-47762, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39213617

RESUMO

At present, it is very necessary to select and prepare suitable positive and negative electrode materials to fabricate high-performance asymmetric supercapacitors. Metal-organic frameworks (MOFs) have garnered significant attention in the energy storage field due to their high conductivity. As a branch, the zirconium organic framework (UIO-66) is a promising porous material due to its large specific surface area and abundant Zr centers. Graphene oxide (GO) and MXene are very suitable as substrate materials for conducting an MOF due to their abundant active sites and adjustable interlayer distance. The GO/MXene@NiZrP prepared through an in situ composite of GO and Mxene with the hydrothermal method and calcining method showed excellent electrochemical performance. Compared with the precursor UIO-66, the specific capacitance of the final product GO/MXene@NiZrP increases more than ten times, mainly because of its special layered porous structure, and GO/MXene@NiZrP has a larger specific surface area, pore volume, and surface defects caused by unstable Zr4+ than those of UIO-66. Using GO/MXene@NiZrP as the positive electrode and biochar (BC) as the negative electrode, an asymmetric supercapacitor, BC//GO/MXene@NiZrP, is assembled. After 10,000 cycles at a current density of 10 A g-1, the capacitance retention remains at 83.3%, showing excellent cycle stability.

6.
Int J Biol Macromol ; 277(Pt 3): 134376, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39094891

RESUMO

Smart packaging material capable of real-time monitoring of food freshness is essential for ensuring food safe. At present, colorimetric ammonia-sensing smart film often possesses issues with complicated production, high cost, and inferior long-term colour stability. Herein, Zinc­copper bimetallic organic framework (ZnCu-BTC, BTC = 1,3,5-benzenetricarboxylate acid) nanorods with colorimetric ammonia-responsiveness were synthesized by adopting facile aqueous solution method, which were then explored as nano inclusions in potato starch/polyvinyl alcohol (PS/PVA) composite film towards developing high-performance smart packaging material. The results demonstrated that the introduction of ZnCu-BTC nanorods within PS/PVA brought about remarkable improvement in blend compatibility, accompanied by a boost in tensile strength to 47.2 MPa, as well as enhanced ultraviolet (UV) blocking efficacy (over 95.0 %). Additionally, the barrier properties of PS/PVA film against water vapor and oxygen were fortified due to the addition of ZnCu-BTC. More importantly, the developed PS/PVA/ZnCu-BTC nanocomposite film displayed satisfactory antibacterial activity (over 99 %) against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), favorable colorimetric ammonia-sensing ability, and long-term colour stability. The ZnCu-BTC incorporated PS/PVA nanocomposite film could grant real-time detection of prawn freshness decline via remarkable colour change, indicating vast promise for smart food packaging applications.


Assuntos
Amônia , Antibacterianos , Colorimetria , Escherichia coli , Embalagem de Alimentos , Nanocompostos , Nanotubos , Álcool de Polivinil , Solanum tuberosum , Staphylococcus aureus , Amido , Nanocompostos/química , Amônia/análise , Amônia/química , Amido/química , Colorimetria/métodos , Solanum tuberosum/química , Álcool de Polivinil/química , Embalagem de Alimentos/métodos , Nanotubos/química , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Escherichia coli/efeitos dos fármacos , Cobre/química , Estruturas Metalorgânicas/química
7.
Nanomicro Lett ; 16(1): 246, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39007981

RESUMO

Macrophage immunotherapy represents an emerging therapeutic approach aimed at modulating the immune response to alleviate disease symptoms. Nanomaterials (NMs) have been engineered to monitor macrophage metabolism, enabling the evaluation of disease progression and the replication of intricate physiological signal patterns. They achieve this either directly or by delivering regulatory signals, thereby mapping phenotype to effector functions through metabolic repurposing to customize macrophage fate for therapy. However, a comprehensive summary regarding NM-mediated macrophage visualization and coordinated metabolic rewiring to maintain phenotypic equilibrium is currently lacking. This review aims to address this gap by outlining recent advancements in NM-based metabolic immunotherapy. We initially explore the relationship between metabolism, polarization, and disease, before delving into recent NM innovations that visualize macrophage activity to elucidate disease onset and fine-tune its fate through metabolic remodeling for macrophage-centered immunotherapy. Finally, we discuss the prospects and challenges of NM-mediated metabolic immunotherapy, aiming to accelerate clinical translation. We anticipate that this review will serve as a valuable reference for researchers seeking to leverage novel metabolic intervention-matched immunomodulators in macrophages or other fields of immune engineering.

8.
Sci Rep ; 14(1): 12832, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834601

RESUMO

Persistent environmental colored compounds, resistant to biodegradation, accumulate and harm eco-systems. Developing effective methods to break down these pollutants is crucial. This study introduces Ag-MIL-101 (Ag-MIL-101) as a composite and reusable catalyst that efficiently degrades specific colored organic pollutants (COPs) like Methylene blue (MB), 4-Nitrophenol (4-NP), and 4-Nitroaniline (4-NA) using sodium borohydride at room temperature. The MIL-101 was synthesized using Terephthalic acid (TPA) derived from the degradation of Polyethylene Terephthalate (PET) plastic waste, with the assistance of zinc chloride. To further investigation, the kinetics of degradation reaction was studied under optimized conditions in the presence of Ag-MIL-101 as catalyst. Our results demonstrated the remarkable efficiency of the degradation process, with over 93% degradation achieved within just 8 min. The catalyst was characterized using FTIR, XRD, FESEM, and TEM. In this study, the average particle size of Ag-MIL-101 was determined using SEM and XRD analysis. These methods allow us to accurately and precisely determine the particle size. We determined the reaction rate constants for the degradation of each COP using a pseudo first-order kinetic equation, with values of 0.585, 0.597 and 0.302 min-1 for MB, 4-NP, and 4-NA, respectively. We also evaluated the recyclability of the catalyst and found that it could be reused for up to three cycles with only a slight decrease in efficiency (10-15%). Overall, our findings highlight the promising application of Ag-MIL-101 as an effective catalyst for the degradation of COPs, emphasizing the importance of optimizing reaction conditions to achieve enhanced efficiency.

9.
J Colloid Interface Sci ; 670: 142-151, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38761567

RESUMO

Transition metal-based oxyhydroxides (MOOH) have garnered significant attention as promising catalyst for the Oxygen Evolution Reaction (OER). However, the direct synthesis of MOOH poses challenges due to the instability of trivalent cobalt and nickel salts, attrivuted to their high oxidation states. In this study, theoretical computations predicted that Co(OH)2 nanosheets are exclusively formed on carbon structures, owing to the stronger binding energy between CoOOH and CC compared to Co(OH)2. Furthermore, the presence of FeOOH interface reduces the binding energy between CoOOH and carbon structure. Experiment evidence confirms that CoOOH can be directly synthesized through controlled epitaxial growth on an FeOOH interface using a hydrothermal method. Moreover, the in-situ doping of iron leads to the formation of high-quality Fe0.35Co0.65OOH with exceptional OER performance, displaying a low overpotential of 240 mV at 10 mA cm-2 and a small Tafel slope of 43 mV dec-1. Density functional theory (DFT) calculations uncover the substantial enhancement of oxygen-containing species adsorption abilities by Fe0.35Co0.65OOH, resulting in improved OER activity. This work presents a promising strategy for the efficient preparation of layered cobalt oxyhydroxides, enabling efficient energy conversion and storage.

10.
Sci Rep ; 14(1): 1143, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212519

RESUMO

In this study, silver nanoparticles (Ag-NPs) were synthesized using a green and biologically inspired approach by utilizing reducing compounds from Thyme plant leaves. Zeolite was used to immobilize the synthesized Ag-NPs (Ag@Z). The modified Zeolite served as a catalyst for the reduction reaction of various organic pollutant dyes (OPDs) including 4-nitrophenol (4-NP), 4-nitroaniline (4-NA), methylene blue (MB), and methyl orange (MO) with sodium borohydride. The degradation of OPDs was monitored by measuring changes in their maximum absorption wavelength intensity. A thorough examination of multiple parameters (catalyst, silver and sodium borohydride dosage, yield degradation, and reaction time) was carried out to identify the optimized conditions for the degradation of OPDs. The results showed that the Ag@Z catalyst achieved an efficiency of over 93% in less than 10 min for the degradation of OPDs. The recoverability and reusability of the catalyst were examined, revealing a partial loss in efficiency after four recovery stages. Structural analysis using XRD, SEM, and TEM techniques confirmed the characteristics and morphology of the synthesized catalyst.

11.
Dalton Trans ; 52(34): 12112-12118, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37581485

RESUMO

WLEDs have been widely used in lighting and display equipment due to their energy-saving and environment-friendly advantages, but it is still a great challenge to construct high-quality single-phase white light materials for the preparation of WLEDs. In this work, three Ln-MOFs (HNU-82-84) with the same structure were synthesized by assembling rare earth ions (Tb3+, Eu3+, La3+) and 4,4',4''-nitrilotribenzoic acid (H3TCA) ligands. The structure and optical properties of the three compounds were investigated. Under the ultraviolet lamp, HNU-82-84 displays green light, red light, and blue light emission, respectively. Based on the RGB principle, aiming at the single-phase white material, the proportion of adding rare earth ions is reasonably adjusted to design and synthesize the Ln-MOF (Eu0.015Tb0.037La0.148-TCA) with CIE chromaticity coordinates of (0.319, 0.344). In addition, the WLED was prepared by Eu0.015Tb0.037La0.148-TCA and commercial LED lamps. Furthermore, HNU-82 has strong fluorescence emission and good water stability and can be used to detect nitrofurazone (NZF) and nitrofurantoin (NFT). The concentrations of the aqueous solutions of NZF and NFT had a well correlated linear relationship with the fluorescence quenching effect of HNU-82, and the detection limits were 6.60 × 10-7 mol L-1 and 4.62 × 10-7 mol L-1, respectively. Hence, HNU-82 also has potential as a fluorescent sensor for the detection of NZF and NFT in the aquatic environment.

12.
Biomaterials ; 301: 122254, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37531774

RESUMO

Inflammatory bowel disease (IBD) has been closely associated with immune disorders and excessive M1 macrophage activation, which can be reversed by the M2-polarizing effect of interleukin-4 (IL-4). However, maintaining native IL-4 activity with its specific release in the inflammatory microenvironment and efficient biological performance remain a challenge. Inspired by the multilayered defense mechanism of the earth's atmosphere, we constructed a multilayered protective nanoarmor (NA) for IL-4 delivery (termed as IL-4@PEGRA NAs) into an intricate inflammatory microenvironment. The poly(ethylene glycol) (PEG)-ylated phenolic rosmarinic acid (RA)-grafted copolymer contains two protective layers-the intermediate polyphenol (RA molecules) and outermost shield (PEG) layers-to protect the biological activity of IL-4 and prolong its circulation in blood. Moreover, IL-4@PEGRA NAs scavenge reactive oxygen species with the specific release of IL-4 and maximize its biofunction at the site of inflammation, leading to M2 macrophage polarization and downregulation of inflammatory mediators. Simultaneously, gut microbiota dysbiosis can improve to amplify the M2-polarizing effect and inhibit the phosphatidylinositol 3 kinase/Akt signaling pathway, thereby attenuating inflammation and promoting colitis tissue repair. It provides a nature-inspired strategy for constructing an advanced multilayered NA delivery system with protective characteristics and potential for IBD management.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Humanos , Interleucina-4/farmacologia , Inflamação/metabolismo , Macrófagos/metabolismo
13.
J Obstet Gynaecol Res ; 49(10): 2468-2474, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37488971

RESUMO

OBJECTIVE: Some studies have reported that the prognosis of total laparoscopic hysterectomy (TLH) for early-stage cervical cancer (CC) is worse than that of open surgery. And this was associated with the use of uterine manipulator or not. Therefore, this study retrospectively analyzes the efficacy and safety of TLH without uterine manipulator combined with pelvic lymphadenectomy for early-stage CC. METHODS: Fifty-eight patients with CC (stage IB1-IIA1) who received radical hysterectomy from September 2019 to January 2020 were divided into no uterine manipulator (n = 26) and uterine manipulator group (n = 32). Then, clinical characteristics were collected and intraoperative/postoperative related indicators were compared. RESULTS: Patients in the no uterine manipulator group had significantly higher operation time and blood loss than in the uterine manipulator group. Notably, there was no significant difference in hemoglobin change, blood transfusion rate, number of pelvic nodules, anal exhaust time, complications and recurrence rate between the two groups. Additionally, patients in the uterine manipulator group were prone to urinary retention (15.6%) and lymphocyst (12.5%), while the no uterine manipulator group exhibited high probability of bladder dysfunction (23.1%) and urinary retention (15.4%). Furthermore, the 1-year disease-free survival rate and the 1-year overall survival rate were not significantly different between the two groups. CONCLUSION: There was no significant difference in the efficacy and safety of TLH with or without uterine manipulator combined with pelvic lymphadenectomy in the treatment of patients with early-stage CC. However, the latter requires consideration of the negative effects of high operation time and blood loss.


Assuntos
Histerectomia , Laparoscopia , Retenção Urinária , Neoplasias do Colo do Útero , Feminino , Humanos , Histerectomia/efeitos adversos , Laparoscopia/efeitos adversos , Excisão de Linfonodo/efeitos adversos , Estadiamento de Neoplasias , Estudos Retrospectivos , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/cirurgia
14.
J Obstet Gynaecol ; 43(1): 2186780, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36939019

RESUMO

Research shows an association between vaginal microbiota and the development of cervical cancer, but the role of altered microbiota in cancer development remains controversial. In this study, we attempted to reveal the vaginal microecological changes in cervical lesions by 16S rRNA gene sequencing. Vaginal secretions were collected from Hakka women in Meizhou City, Guangdong Province, China. The diversity, composition and the correlations among species of the vaginal microbiota were determined by sequencing the bacterial 16S rRNA gene. The microbial functional abundance was detected via KEGG and COG (Clusters of Orthologous Groups). The results showed that the Cancer group was characterised by evident changes in the composition of the vaginal microbiota, increased alpha diversity, and altered community structure distribution and microbial interaction network. Linear discriminant analysis (LDA) effect size showed that 21 bacterial species were abundant in the Cancer group. In addition, the loss of Lactobacillus stimulated other flora proliferation, resulting in a microecological disturbance. KEGG and COG analysis indicated the cancer group is mainly concentrated in energy metabolism. In short, the vaginal microecology of Hakka women in Meizhou City presents with different degrees of cervical lesions, and the flora imbalance is an important factor in the development of cervical cancer.IMPACT STATEMENTWhat is already known on this subject? Cervical cancer is one of the most common gynecological malignancies worldwide and has become a prominent public health problem.What the results of this study add? Our study showed that the type of vaginal community status of Hakka women in Meizhou area was characterised by L. Iners predominates, and the gradual loss of Lactobacillus dominance in vaginal bacteria is key to microecological imbalance.What the implications are of these findings for clinical practice and/or further research? Disturbances in vaginal microecology can stimulate energy metabolism and lipid metabolism to induce cervical cancer development.


Assuntos
Microbiota , Neoplasias do Colo do Útero , Feminino , Humanos , RNA Ribossômico 16S/genética , Vagina/microbiologia , Lactobacillus/genética , Microbiota/genética
15.
Angew Chem Int Ed Engl ; 60(31): 16953-16957, 2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34038607

RESUMO

The controlled bottom-up design of polymers with metal oxide backbones is a grand challenge in materials design, as it could give unique control over the resulting chemical properties. Herein, we report a 1D-organo-functionalized polyoxometalate polymer featuring a purely inorganic backbone. The polymer is self-assembled from two types of monomers, inorganic Wells-Dawson-type polyoxometalates, and aromatic organo-boronates. Their covalent linkage results in 1D polymer strands, which combine an inorganic oxide backbone (based on B-O and Nb-O linkages) with functional organic side-chains. The polymer shows high bulk proton conductivity of up to 1.59×10-1  S cm-1 at 90 °C and 98 % relative humidity. This synthetic approach could lead to a new class of organic-inorganic polymers where function can be designed by controlled tuning of the monomer units.

16.
Bioact Mater ; 6(10): 3109-3124, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33778192

RESUMO

Excessive production of inflammatory chemokines and reactive oxygen species (ROS) can cause a feedback cycle of inflammation response that has a negative effect on cutaneous wound healing. The use of wound-dressing materials that simultaneously absorb chemokines and scavenge ROS constitutes a novel 'weeding and uprooting' treatment strategy for inflammatory conditions. In the present study, a composite hydrogel comprising an amine-functionalized star-shaped polyethylene glycol (starPEG) and heparin for chemokine sequestration as well as Cu5.4O ultrasmall nanozymes for ROS scavenging (Cu5.4O@Hep-PEG) was developed. The material effectively adsorbs the inflammatory chemokines monocyte chemoattractant protein-1 and interleukin-8, decreasing the migratory activity of macrophages and neutrophils. Furthermore, it scavenges the ROS in wound fluids to mitigate oxidative stress, and the sustained release of Cu5.4O promotes angiogenesis. In acute wounds and impaired-healing wounds (diabetic wounds), Cu5.4O@Hep-PEG hydrogels outperform the standard-of-care product Promogram® in terms of inflammation reduction, increased epidermis regeneration, vascularization, and wound closure.

18.
ACS Appl Mater Interfaces ; 11(2): 1766-1781, 2019 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-30523688

RESUMO

Since generating toxic reactive oxygen species is largely dependent on oxygen, bacteria-infected wounds' hypoxia significantly inhibits photodynamic therapy's antibacterial efficiency. Therefore, a novel therapeutic method for eradicating multidrug-resistant bacteria is developed based on the light-activated alkyl free-radical generation (that is oxygen independent). According to the polydopamine-coated carboxyl graphene (PDA@CG), an initiator-loaded and pH-sensitive heat-producible hybrid of bactericides was synthesized. According to fluorescence/thermal imaging, under the low pH of the bacterial infection sites, this platform turned positively charged, which allows their accumulation in local infection site. The plasmonic heating effects of PDA@CG can make the initiator decomposed to generate alkyl radical (R•) under the followed near-infrared light irradiation. As a result, oxidative stress can be elevated, DNA damages in bacteria can be caused, and finally even multidrug-resistance death can be caused under different oxygen tensions. Moreover, our bactericidal could promote wound healing in vivo and negligible toxicity in vivo and in vitro and eliminate abscess. Accordingly, this study proves that combination of oxygen-independent free-radical-based therapy along with a stimulus-responsiveness moiety not only can be used as an effective treatment of multidrug-resistant bacteria infection, but also creates a use of a variety of free radicals for treatment of multidrug-resistant bacteria infection wounds.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Indóis , Luz , Staphylococcus aureus Resistente à Meticilina/crescimento & desenvolvimento , Fotoquimioterapia , Polímeros , Espécies Reativas de Oxigênio/química , Infecções Estafilocócicas/tratamento farmacológico , Células 3T3 , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Grafite/química , Grafite/farmacologia , Humanos , Indóis/química , Indóis/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Polímeros/química , Polímeros/farmacologia , Infecções Estafilocócicas/metabolismo , Infecções Estafilocócicas/patologia
19.
J Nanobiotechnology ; 16(1): 23, 2018 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-29548342

RESUMO

BACKGROUND: Silver and photothermal therapy (PTT) have been widely used for eradicating the drug-resistant bacteria. However, the risks of excess of silver for humans and the low efficiency of PTT still limit their in vivo therapeutic application. Integration of two distinctive bactericides into one entity is a promising platform to improve the efficiency of antimicrobial agents. RESULTS: In this study, a chemo-photothermal therapeutic platform based on polydopamine (PDA)-coated gold nanorods (GNRs) was developed. The PDA coating acquired high Ag+ ions loading efficiency and Cy5-SE fluorescent agent labeled glycol chitosan (GCS) conjugation (Ag+-GCS-PDA@GNRs). This platform became positively charged in the low pH environment of the abscess, allowing their accumulation in local infection site as revealed by thermal/florescence imaging. The loaded Ag+ ions was released in a pH-sensitive manner, resulting in selective Ag+ ions delivery to the abscess environment (pH ~ 6.3). More importantly, the ultralow dose of Ag+ ions could effectively damage the bacterial membrane, causing the permeability increase and the heat resistance reduction of the cell membrane, leading to the large improvement on bactericidal efficiency of PTT. On the other hand, the hyperthermia could trigger more Ag+ ions release, resulting in further improvement on bactericidal efficiency of chemotherapy. Combinational chemo-hyperthermia therapy of Ag+-GCS-PDA@GNRs could thoroughly ablate abscess and accelerate wound healing via a synergistic antibacterial effect. CONCLUSIONS: Our studies demonstrate that Ag+-GCS-PDA@GNRs is a robust and practical platform for use in chemo-thermal focal infection therapy with outstanding synergistic bacteria ablating.


Assuntos
Abscesso/tratamento farmacológico , Antibacterianos/farmacologia , Hipertermia Induzida/métodos , Nanopartículas Metálicas/química , Fototerapia/métodos , Prata/farmacologia , Infecções Estafilocócicas/tratamento farmacológico , Abscesso/microbiologia , Abscesso/patologia , Animais , Antibacterianos/química , Carbocianinas/química , Quitosana/química , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/patogenicidade , Corantes Fluorescentes/química , Ouro/química , Hemólise/efeitos dos fármacos , Humanos , Concentração de Íons de Hidrogênio , Indóis/química , Masculino , Nanopartículas Metálicas/ultraestrutura , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/crescimento & desenvolvimento , Staphylococcus aureus Resistente à Meticilina/patogenicidade , Camundongos , Camundongos Endogâmicos BALB C , Nanotubos/química , Nanotubos/ultraestrutura , Polímeros/química , Prata/química , Pele/efeitos dos fármacos , Pele/microbiologia , Pele/patologia , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/patologia , Eletricidade Estática
20.
Acta Biomater ; 69: 256-264, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29374599

RESUMO

Subcutaneous abscesses infected by multidrug-resistant bacteria are becoming an increasing challenge to human health. To address this challenge, a surface-adaptive and biocompatible glycol chitosan conjugated carboxyl graphene (GCS-CG) is developed, which exhibits unique self-adaptive target to the acidic microenvironment of abscess (∼pH 6.3) and no damage to the healthy tissue (pH 7.4) around the abscess. Originally, following conjugated with GCS, the absorbance of CG obviously increases in the near-infrared (NIR) region, enabling GCS-CG to generate an increment amount of heat. GCS-CG shows fast pH-responsive surface charge transition from negative to positive, which presents strong adherence to negatively charged bacteria surface in abscess, while exhibits poor affinity to host cells in healthy tissues. The local temperature of NIR-irradiated GCS-CG is estimated to be higher than their ambient temperature, ensuring targeted heating and eradicating the bacteria to reduce the damage to tissue; hence, wound healing is accelerated. Moreover, the in vitro and in vivo biosafety results demonstrate that GCS-CG presents greatly biocompatible even at a high concentration of 1 mg·mL-1. Given the above advantages as well as the simple preparation, graphene developed here may provide a new potential application as a useful antibacterial agent in the areas of healthcare. STATEMENT OF SIGNIFICANCE: A surface-adaptive nanomaterial, glycol chitosan conjugated carboxyl graphene (GCS-CG) is developed, which realizes the acidity-triggered bacteria targeting. GCS-CG can result in direct thermal ablation of bacteria and enhancement of the infected wound healing, but exhibit no damage to healthy tissues. The pH-responsive GCS-CG described here, containing no antibiotics, has great potentials in treating bacterial infection and even multidrug-resistant bacteria.


Assuntos
Abscesso/terapia , Antibacterianos , Quitosana , Grafite , Hipertermia Induzida , Fototerapia , Dermatopatias Bacterianas/terapia , Cicatrização/efeitos dos fármacos , Células 3T3 , Abscesso/metabolismo , Abscesso/patologia , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Quitosana/química , Quitosana/farmacologia , Grafite/química , Grafite/farmacologia , Concentração de Íons de Hidrogênio , Camundongos , Camundongos Endogâmicos BALB C , Dermatopatias Bacterianas/metabolismo , Dermatopatias Bacterianas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA