Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Cardiol Discov ; 3(1): 24-29, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36969984

RESUMO

Dopamine, via its receptors, plays a vital role in the maintenance of blood pressure by modulating renal sodium transport. However, the role of the D4 dopamine receptor (D4 receptor) in renal proximal tubules (PRTs) is still unclear. This study aimed to verify the hypothesis that activation of D4 receptor directly inhibits the activity of the Na+-K+-ATPase (NKA) in RPT cells. Methods: NKA activity, nitric oxide (NO) and cyclic guanosine monophosphate (cGMP) levels were measured in RPT cells treated with the D4 receptor agonist PD168077 and/or the D4 receptor antagonist L745870, the NO synthase inhibitor NG-nitro-L-arginine-methyl ester (L-NAME) or the soluble guanylyl cyclase inhibitor 1H-[1,2,4] oxadiazolo-[4,3-a] quinoxalin-1-one (ODQ). Total D4 receptor expression and its expression in the plasma membrane were investigated by immunoblotting in RPT cells from Wistar-Kyoto (WKY) rats and spontaneously hypertensive rats (SHRs). Results: Activation of D4 receptors with PD168077, inhibited NKA activity in RPT cells from WKY rats in a concentration- and time-dependent manner. The inhibitory effect of PD168077 on NKA activity was prevented by the addition of the D4 receptor antagonist L745870, which by itself had no effect. The NO synthase inhibitor L-NAME and the soluble guanylyl cyclase inhibitor ODQ, which by themselves had no effect on NKA activity, eliminated the inhibitory effect of PD168077 on NKA activity. Activation of D4 receptors also increased NO levels in the culture medium and cGMP levels in RPT cells. However, the inhibitory effect of D4 receptors on NKA activity was absent in RPT cells from SHRs, which could be related to decreased plasma membrane expression of D4 receptors in SHR RPT cells. Conclusions: Activation of D4 receptors directly inhibits NKA activity via the NO/cGMP signaling pathway in RPT cells from WKY rats but not SHRs. Aberrant regulation of NKA activity in RPT cells may be involved in the pathogenesis of hypertension.

2.
Bosn J Basic Med Sci ; 22(5): 772-783, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-35490365

RESUMO

The regenerative potential of cardiomyocytes in adult mammals is limited. Previous studies reported that cardiomyocyte proliferation is suppressed by AMP-activated protein kinase (AMPK). The role of liver kinase B1 (LKB1), as the major upstream kinase for AMPK, on cardiomyocyte proliferation is unclear. In this study, we found that the LKB1 levels rapidly increased after birth. With loss- and gain-of-function study, our data demonstrated that LKB1 levels negatively correlate with cardiomyocyte proliferation. We next identified Yes-associated protein (YAP) as the downstream effector of LKB1 using high-throughput RNA sequencing. Our results also demonstrated that AMPK plays an essential role in Lkb1 knockdown-induced cardiomyocyte proliferation. Importantly, deactivated AMPK abolished the LKB1-mediated regulation of YAP nuclear translocation and cardiomyocyte proliferation. Thus, our findings suggested the role of LKB1-AMPK-YAP axis during cardiomyocyte proliferation, which could be used as a potential target for inducing cardiac regeneration after injury.


Assuntos
Proteínas Quinases Ativadas por AMP , Miócitos Cardíacos , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Mamíferos/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas de Sinalização YAP
4.
Oxid Med Cell Longev ; 2021: 2999296, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34712381

RESUMO

Calorie restriction (CR) extends lifespan and increases resistance to multiple forms of stress, including renal ischemia-reperfusion (I/R) injury. However, whether CR has protective effects on contrast-induced nephropathy (CIN) remains to be determined. In this study, we evaluated the therapeutic effects of CR on CIN and investigated the potential mechanisms. CIN was induced by the intravenous injection of iodinated contrast medium (CM) iopromide (1.8 g/kg) into Sprague Dawley rats with normal food intake or 40% reduced food intake, 4 weeks prior to iopromide administration. We found that CR was protective of CIN, assessed by renal structure and function. CM increased apoptosis, reactive oxygen species (ROS), and inflammation in the renal outer medulla, which were decreased by CR. The silent information regulator 1 (SIRT1) participated in the protective effect of CR on CIN, by upregulating glutathione peroxidase 4 (GPX4), a regulator of ferroptosis, because this protective effect was reversed by EX527, a specific SIRT1 antagonist. Our study showed that CR protected CIN via SIRT1/GPX4 activation. CR may be used to mitigate CIN.


Assuntos
Restrição Calórica , Nefropatias/prevenção & controle , Rim/enzimologia , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Sirtuína 1/metabolismo , Animais , Apoptose , Meios de Contraste , Citocinas/metabolismo , Modelos Animais de Doenças , Ativação Enzimática , Ferroptose , Mediadores da Inflamação/metabolismo , Iohexol/análogos & derivados , Rim/patologia , Nefropatias/induzido quimicamente , Nefropatias/enzimologia , Nefropatias/patologia , Masculino , Estresse Oxidativo , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
5.
Clin Exp Nephrol ; 24(11): 989-998, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32734507

RESUMO

BACKGROUND: Contrast-induced nephropathy (CIN), a complication caused by using contrast medium during diagnostic and interventional procedures, occurs frequently and lacks effective treatment. AdipoRon, the agonist of adiponectin receptors, has been shown to benefit many organs including the kidney. This study aimed to investigate the role of AdipoRon in treating CIN. METHODS: CIN model was established via infusing iopromide (1.8 g/kg) in Sprague-Dawley (SD) rats; NRK52E cells were treated with iopromide (5-50 µM). Renal function, renal histopathology, levels of lactate dehydrogenase (LDH) release, cell vitality, oxidative stress and inflammatory markers were measured to evaluate the protective effects of AdipoRon. The level of pAMPK/AMPK was determined by western blot. RESULTS: AdipoRon (50 mg/kg) significantly reversed serum creatinine, blood urea nitrogen, creatinine clearance and urinary kidney injury molecule-1 levels induced by iopromide in SD rats. Besides, it decreased the renal injury score and apoptosis of renal cells. AdipoRon also reversed the changes of antioxidant markers, pro-oxidant and inflammatory markers induced by iopromide. Moreover, the in vitro studies showed that AdipoRon decreased LDH release and increased cell vitality in NRK52E cells treated with iopromide. Then, we demonstrated that the protection of AdipoRon was accompanied by augmented AMPK phosphorylation. Both in vivo and in vitro studies demonstrated that compound c, an AMPK inhibitor, reversed the AdipoRon-mediated improvement in the CIN model. CONCLUSION: Our data indicate that AdipoRon protects against the CIN by suppressing oxidative stress and inflammation via activating the AMPK pathway, showing that AdipoRon might be a potential candidate for the prevention and therapy of CIN.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Meios de Contraste/efeitos adversos , Iohexol/análogos & derivados , Nefropatias/prevenção & controle , Piperidinas/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Nitrogênio da Ureia Sanguínea , Moléculas de Adesão Celular/urina , Linhagem Celular , Creatinina/sangue , Modelos Animais de Doenças , Inflamação/prevenção & controle , Iohexol/efeitos adversos , Nefropatias/induzido quimicamente , Nefropatias/patologia , Lactato Desidrogenases/metabolismo , Masculino , Estresse Oxidativo/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Piperidinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores de Adiponectina/agonistas , Transdução de Sinais/efeitos dos fármacos
6.
Acta Pharmacol Sin ; 41(11): 1457-1464, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32424239

RESUMO

Mitsugumin 53 (MG53) is a tripartite motif family protein that has been reported to attenuate injury via membrane repair in different organs. Contrast-induced acute kidney injury (CI-AKI) is a common complication caused by the administration of iodinated contrast media (CM). While the cytotoxicity induced by CM leading to tubular cell death may be initiated by cell membrane damage, we wondered whether MG53 alleviates CI-AKI. This study was designed to investigate the effect of MG53 on CI-AKI and the underlying mechanism. A rat model of CI-AKI was established, and CI-AKI induced the translocation of MG53 from serum to injury sites on the renal proximal tubular (RPT) epithelia, as illustrated by immunoblot analysis and immunohistochemical staining. Moreover, pretreatment of rats with recombinant human MG53 protein (rhMG53, 2 mg/mL) alleviated iopromide-induced injury in the kidney, which was determined by measuring serum creatinine, blood urea nitrogen and renal histological changes. In vitro studies demonstrated that exposure of RPT cells to iopromide (20, 40, and 80 mg/mL) caused cell membrane injury and cell death, which were attenuated by rhMG53 (10 and 50 µg/mL). Mechanistically, MG53 translocated to the injury site on RPT cells and bound to phosphatidylserine to protect RPT cells from iopromide-induced injury. In conclusion, MG53 protects against CI-AKI through cell membrane repair and reducing cell apoptosis; therefore, rhMG53 might be a potential effective means to treat or prevent CI-AKI.


Assuntos
Injúria Renal Aguda/prevenção & controle , Apoptose/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Substâncias Protetoras/uso terapêutico , Proteínas com Motivo Tripartido/uso terapêutico , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/patologia , Animais , Membrana Celular/metabolismo , Células Epiteliais , Feminino , Humanos , Iohexol/análogos & derivados , Rim/patologia , Túbulos Renais Proximais/citologia , Masculino , Fosfatidilserinas/metabolismo , Substâncias Protetoras/metabolismo , Ratos Endogâmicos WKY , Ratos Sprague-Dawley , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/uso terapêutico , Proteínas com Motivo Tripartido/metabolismo
7.
Nat Commun ; 10(1): 4659, 2019 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-31604915

RESUMO

MG53 is a muscle-specific TRIM-family protein that presides over the cell membrane repair response. Here, we show that MG53 present in blood circulation acts as a myokine to facilitate tissue injury-repair and regeneration. Transgenic mice with sustained elevation of MG53 in the bloodstream (tPA-MG53) have a healthier and longer life-span when compared with littermate wild type mice. The tPA-MG53 mice show normal glucose handling and insulin signaling in skeletal muscle, and sustained elevation of MG53 in the bloodstream does not have a deleterious impact on db/db mice. More importantly, the tPA-MG53 mice display remarkable dermal wound healing capacity, enhanced muscle performance, and improved injury-repair and regeneration. Recombinant human MG53 protein protects against eccentric contraction-induced acute and chronic muscle injury in mice. Our findings highlight the myokine function of MG53 in tissue protection and present MG53 as an attractive biological reagent for regenerative medicine without interference with glucose handling in the body.


Assuntos
Proteínas de Membrana/fisiologia , Cicatrização , Animais , Cálcio/metabolismo , Glucose/metabolismo , Teste de Tolerância a Glucose , Insulina/metabolismo , Proteínas de Membrana/sangue , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Músculo Esquelético/metabolismo , Regeneração/genética , Biologia de Sistemas
8.
Acta Pharmacol Sin ; 40(10): 1314-1321, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31061533

RESUMO

Irisin, a myokine, is cleaved from the extracellular portion of fibronectin domain-containing 5 protein in skeletal muscle and myocardium and secreted into circulation as a hormone during exercise. Irisin has been found to exert protective effects against lung and heart injuries. However, whether irisin influences myocardial infarction (MI) remains unclear. In this study we investigated the therapeutic effects of irisin in an acute MI model and its underlying mechanisms. Adult C57BL/6 mice were subjected to ligation of the left anterior descending coronary artery and treated with irisin for 2 weeks after MI. Cardiac function was assessed using echocardiography. We found that irisin administration significantly alleviated MI-induced cardiac dysfunction and ventricular dilation at 4 weeks post-MI. Irisin significantly reduced infarct size and fibrosis in post-MI hearts. Irisin administration significantly increased angiogenesis in the infarct border zone and decreased cardiomyocyte apoptosis, but did not influence cardiomyocyte proliferation. In human umbilical vein endothelial cells (HUVEC), irisin significantly increased the phosphorylation of ERK, and promoted the migration of HUVEC detected in wound-healing and transwell chamber migration assay. The effects of irisin were blocked by the ERK inhibitor U0126. In conclusion, irisin improves cardiac function and reduces infarct size in post-MI mouse heart. The therapeutic effect is associated with its pro-angiogenic function through activating ERK signaling pathway.


Assuntos
Fibronectinas/metabolismo , Infarto do Miocárdio/metabolismo , Neovascularização Patológica/metabolismo , Animais , Apoptose/efeitos dos fármacos , Butadienos/farmacologia , Movimento Celular/efeitos dos fármacos , Modelos Animais de Doenças , Fibronectinas/antagonistas & inibidores , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/patologia , Neovascularização Patológica/patologia , Nitrilas/farmacologia , Proteínas Recombinantes/metabolismo
9.
Life Sci ; 221: 72-82, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30738868

RESUMO

AIMS: The proliferation of VSMCs is the pathologic basis for intimal hyperplasia after angioplasty in diabetic patients. Translocator protein (TSPO), located in the outer mitochondrial membrane, has been found to regulate redox intermediate components in cell dysfunction. We hypothesized that TSPO may regulate VSMC proliferation and migration, and be involved in the intimal hyperplasia after angioplasty in diabetes. MATERIALS AND METHODS: Cell proliferation was measured by cell counting and MTT assays. Cell migration was measured by Transwell® and scratch-wound assays. TSPO expression in arteries of rats and high glucose-treated A10 cells were detected by immunoblotting and immunofluorescence staining. Neointimal formation of carotid artery was induced by balloon injury in type 2 diabetic rat. KEY FINDINGS: TSPO expression was increased in the arterial samples from diabetic rats and A10 cells treated with high glucose. Down-regulation of TSPO expression by siRNA decreased the high-glucose-induced VSMC proliferation and migration in A10 cells. This phenomenon could be simulated by using TSPO ligands, PK 11195 and Ro5-4864. cGMP/PKG signals were involved in the TSPO ligand action, since in the presence of cGMP or PKG inhibitor ODQ or KT5823 respectively, the effect of PK 11195 on VSMC proliferation was blocked. Furthermore, PK 11195 significantly inhibited neointimal formation by the inhibition of VSMC proliferation. SIGNIFICANCE: This study suggests that TSPO inhibition suppresses the proliferation and migration of VSMCs induced by hyperglycemia, consequently, preventing atherosclerosis and restenosis after angioplasty in diabetic conditions. TSPO may be a potential therapeutic target to reduce arterial remodeling induced by angioplasty in diabetes.


Assuntos
Proteínas de Transporte/metabolismo , Hiperplasia/metabolismo , Receptores de GABA-A/metabolismo , Animais , Benzodiazepinonas/farmacologia , Artérias Carótidas/patologia , Proteínas de Transporte/fisiologia , Movimento Celular , Proliferação de Células , Células Cultivadas , Diabetes Mellitus Experimental/metabolismo , Modelos Animais de Doenças , Hiperplasia/prevenção & controle , Isoquinolinas/farmacologia , Ligantes , Masculino , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Neointima/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de GABA-A/fisiologia
10.
J Cardiovasc Pharmacol ; 72(6): 259-269, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29979350

RESUMO

Irisin, a muscle-origin protein derived from the extracellular domain of the fibronectin domain-containing 5 protein (FNDC5), has been shown to modulate mitochondria welfare through paracrine action. Here, we test the hypothesis that irisin contributes to cardioprotection after myocardial infarction by preserving mitochondrial function in cardiomyocytes. Animal model studies show that intravenous administration of exogenous irisin produces dose-dependent protection against ischemia/reperfusion (I/R)-induced injury to the heart as reflected by the improvement of left ventricular ejection fraction and the reduction in serum level of cTnI (n = 15, P < 0.05). I/R-induced apoptosis of cardiomyocytes is reduced after irisin treatment. The irisin-mediated protection has, at least in part, an effect on mitochondrial function because administration of irisin increases irisin staining in the mitochondria of the infarct area. Irisin also reduces I/R-induced oxidative stress as determined by mitochondrial membrane potential evaluation and superoxide FLASH event recording (n = 4, P < 0.05). The interaction between irisin and superoxide dismutase2 (SOD2) plays a key role in the protective process because irisin treatment increases SOD activity (n = 10, P < 0.05) and restores the mitochondria localization of SOD2 in cardiomyocytes (n = 5, P < 0.05). These results demonstrate that irisin plays a protective role against I/R injury to the heart. Targeting the action of irisin in mitochondria presents a novel therapeutic intervention for myocardial infarction.


Assuntos
Antioxidantes/farmacologia , Fibronectinas/farmacologia , Mitocôndrias Cardíacas/efeitos dos fármacos , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Modelos Animais de Doenças , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias Cardíacas/enzimologia , Mitocôndrias Cardíacas/patologia , Infarto do Miocárdio/enzimologia , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Traumatismo por Reperfusão Miocárdica/enzimologia , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/patologia , Estresse Oxidativo/efeitos dos fármacos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Volume Sistólico/efeitos dos fármacos , Troponina I/sangue , Função Ventricular Esquerda/efeitos dos fármacos
11.
Sci Transl Med ; 9(418)2017 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-29187642

RESUMO

Limb remote ischemic preconditioning (RIPC) is an effective means of protection against ischemia/reperfusion (IR)-induced injury to multiple organs. Many studies are focused on identifying endocrine mechanisms that underlie the cross-talk between muscle and RIPC-mediated organ protection. We report that RIPC releases irisin, a myokine derived from the extracellular portion of fibronectin domain-containing 5 protein (FNDC5) in skeletal muscle, to protect against injury to the lung. Human patients with neonatal respiratory distress syndrome show reduced concentrations of irisin in the serum and increased irisin concentrations in the bronchoalveolar lavage fluid, suggesting transfer of irisin from circulation to the lung under physiologic stress. In mice, application of brief periods of ischemia preconditioning stimulates release of irisin into circulation and transfer of irisin to the lung subjected to IR injury. Irisin, via lipid raft-mediated endocytosis, enters alveolar cells and targets mitochondria. Interaction between irisin and mitochondrial uncoupling protein 2 (UCP2) allows for prevention of IR-induced oxidative stress and preservation of mitochondrial function. Animal model studies show that intravenous administration of exogenous irisin protects against IR-induced injury to the lung via improvement of mitochondrial function, whereas in UCP2-deficient mice or in the presence of a UCP2 inhibitor, the protective effect of irisin is compromised. These results demonstrate that irisin is a myokine that facilitates RIPC-mediated lung protection. Targeting the action of irisin in mitochondria presents a potential therapeutic intervention for pulmonary IR injury.


Assuntos
Fibronectinas/sangue , Fibronectinas/metabolismo , Mitocôndrias/metabolismo , Traumatismo por Reperfusão/sangue , Traumatismo por Reperfusão/metabolismo , Animais , Animais Recém-Nascidos , Feminino , Humanos , Masculino , Camundongos , Estresse Oxidativo/fisiologia , Proteína Desacopladora 2/antagonistas & inibidores , Proteína Desacopladora 2/deficiência , Proteína Desacopladora 2/metabolismo
12.
Hypertens Res ; 40(7): 652-657, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28230199

RESUMO

Both the dopaminergic and renin-angiotensin systems play important roles in the regulation of blood pressure. Our previous study showed that the stimulation of dopaminergic D4 receptors reduced angiotensin II type 1 (AT1) receptor expression in renal proximal tubule (RPT) cells. In this study, we tested whether AT1 receptors, in return, would regulate D4 receptor expression and function in RPT cells. Expression of the D4 receptor from Wistar-Kyoto (WKY) or spontaneously hypertensive rats (SHRs) RPT cells and renal cortex tissues were determined by western blot, and Na+-K+ ATPase activity was determined using an enzyme assay. Urine volume and urine sodium of WKY rats and SHRs treated with or without D4 receptor stimulation were measured. Thus, activation of AT1 receptors with angiotensin II (Ang II) increased D4 receptor protein expression in RPT cells, and this increase was blocked by nicardipine, a calcium influx blocker. The D4 receptor agonist PD168077 inhibited Na+-K+ ATPase activity in WKY RPT cells but not in SHR RPT cells. Ang II pre-treatment promoted D4 receptor-mediated inhibition of Na+-K+ ATPase in RPT cells in WKY rats but not in SHRs. Meanwhile, Ang II pre-treatment augmented the natriuretic effect of PD168077 in WKY rats but not in SHRs. In conclusion, AT1 stimulation can regulate the expression and natriuretic function of dopaminergic D4 receptors in RPT cells and might be involved in the pathogenesis of essential hypertension.


Assuntos
Túbulos Renais Proximais/química , Receptor Tipo 1 de Angiotensina/fisiologia , Receptores de Dopamina D4/análise , Angiotensina II/farmacologia , Animais , Cálcio/metabolismo , Células Cultivadas , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY
13.
J Am Heart Assoc ; 5(4)2016 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-27107134

RESUMO

BACKGROUND: Ion transport in the renal proximal tubule (RPT), which is increased in essential hypertension, is regulated by numerous hormones and humoral factors, including insulin and dopamine. Activation of dopamine receptor inhibits sodium reabsorption, whereas activation of insulin receptor increases sodium reabsorption in RPTs, and hyperinsulinemic animals and patients have defective renal dopaminergic system. We presume that there is an inhibition of D4 receptor on insulin receptor expression and effect, and the regulation is lost in spontaneously hypertensive rats (SHRs). METHODS AND RESULTS: Insulin receptor expression was determined by immunoblotting, and Na(+)-K(+)-ATPase activity was detected in both Wistar-Kyoto (WKY) and SHR RPT cells. Stimulation of D4 receptor with PD168077 decreased expression of insulin receptors, which was blocked in the presence of the calcium-channel blocker, nicardipine (10(-6) mol/L per 24 hours), in cell culture medium without calcium or in the presence of inositol 1,4,5-trisphosphate (IP3) receptor blocker (2-aminoethyl diphenylborinate [2-ADB]; 10(-6) mol/L per 24 hours), indicating that extracellular calcium entry and calcium release from the endoplasmic reticulum were involved in the signal pathway. Stimulation of the insulin receptor stimulated Na(+)-K(+)-ATPase activity, whereas pretreatment with PD168077 for 24 hours decreased the inhibitory effects of insulin receptor on Na(+)-K(+)-ATPase activity in WKY cells. However, in SHR cells, inhibition of D4 receptor on insulin receptor expression and effect were lost. CONCLUSIONS: Activation of D4 receptor inhibits insulin receptor expression in RPT cells from WKY rats. The aberrant inhibition of D4 receptor on insulin receptor expression and effect might be involved in the pathogenesis of essential hypertension.


Assuntos
Benzamidas/farmacologia , Hipertensão/genética , Túbulos Renais Proximais/metabolismo , Piperazinas/farmacologia , RNA/genética , Receptor de Insulina/genética , Receptores de Dopamina D4/efeitos dos fármacos , Animais , Cálcio/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Células Cultivadas , Modelos Animais de Doenças , Hipertensão Essencial , Hipertensão/metabolismo , Hipertensão/patologia , Immunoblotting , Líquido Intracelular/metabolismo , Túbulos Renais Proximais/patologia , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Reação em Cadeia da Polimerase em Tempo Real , Receptor de Insulina/biossíntese , Receptores de Dopamina D4/metabolismo
14.
Oncotarget ; 7(16): 22474-85, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-26967557

RESUMO

Ischemic injury to neurons represents the underlying cause of stroke to the brain. Our previous studies identified MG53 as an essential component of the cell membrane repair machinery. Here we show that the recombinant human (rh)MG53 protein facilitates repair of ischemia-reperfusion (IR) injury to the brain. MG53 rapidly moves to acute injury sites on neuronal cells to form a membrane repair patch. IR-induced brain injury increases permeability of the blood-brain-barrier, providing access of MG53 from blood circulation to target the injured brain tissues. Exogenous rhMG53 protein can protect cultured neurons against hypoxia/reoxygenation-induced damages. Transgenic mice with increased levels of MG53 in the bloodstream are resistant to IR-induced brain injury. Intravenous administration of rhMG53, either prior to or after ischemia, can effectively alleviate brain injuries in rats. rhMG53-mediated neuroprotection involves suppression of apoptotic neuronal cell death, as well as activation of the pro-survival RISK signaling pathway. Our data indicate a physiological function for MG53 in the brain and suggest that targeting membrane repair or RISK signaling may be an effective means to treat ischemic brain injury.


Assuntos
Barreira Hematoencefálica/metabolismo , Isquemia Encefálica , Proteínas de Transporte/farmacologia , Fármacos Neuroprotetores/farmacologia , Animais , Proteínas de Transporte/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/metabolismo , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/farmacologia , Transdução de Sinais/efeitos dos fármacos , Proteínas com Motivo Tripartido
15.
Gene ; 580(2): 89-95, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26802971

RESUMO

Transcriptional gene silencing (TGS) induced by synthetic exogenous short interfering RNAs (siRNAs) that are fully complementary to gene promoters has been demonstrated in mammalian cells. However, it remains unclear whether microRNAs (miRNAs), which are endogenous small regulatory RNAs, can also silence gene transcription. We investigated the regulation mechanism of let-7d on dopamine D3 receptor (DRD3) in immortalized renal proximal tubule (RPT) cells of rats, where let-7d has a predicted homologous target site within DRD3 promoter. We found that let-7d mimics repressed DRD3 expression at the transcription level in RPT cells. Let-7d induced DRD3 inhibition via DNA-methyltransferase 1 (DNMT1) and DNA-methyltransferase 3b (DNMT3b) dependent DNA methylation and the inhibition could be abolished by 5'-aza-2'-deoxycytidine (5-aza-dc), a DNA methylation inhibitor. Let-7d induced DRD3 repression was associated with the recruitment of Argonaute 2 (AGO2) protein. Histone 3 lysine 9 dimethylation (H3K9me2) was involved in the let-7d induced DRD3 TGS, indicating the chromatin-level silencing. In conclusion, our results demonstrated that let-7d may induce DRD3 repression in a transcriptional manner by means of DNMTs dependent DNA methylation and histone modification. It is suggested that miRNAs may act as a transcriptional gene regulator via the recognition of the homologous target site within the gene promoter.


Assuntos
Túbulos Renais Proximais/metabolismo , MicroRNAs/farmacologia , Interferência de RNA/efeitos dos fármacos , Receptores de Dopamina D3/genética , Animais , Sequência de Bases , Linhagem Celular Transformada , DNA (Citosina-5-)-Metiltransferase 1 , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/patologia , MicroRNAs/química , Mimetismo Molecular , Ratos , Ratos Endogâmicos WKY
16.
J Biol Chem ; 290(40): 24592-603, 2015 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-26306047

RESUMO

Cell membrane repair is an important aspect of physiology, and disruption of this process can result in pathophysiology in a number of different tissues, including wound healing, chronic ulcer and scarring. We have previously identified a novel tripartite motif family protein, MG53, as an essential component of the cell membrane repair machinery. Here we report the functional role of MG53 in the modulation of wound healing and scarring. Although MG53 is absent from keratinocytes and fibroblasts, remarkable defects in skin architecture and collagen overproduction are observed in mg53(-/-) mice, and these animals display delayed wound healing and abnormal scarring. Recombinant human MG53 (rhMG53) protein, encapsulated in a hydrogel formulation, facilitates wound healing and prevents scarring in rodent models of dermal injuries. An in vitro study shows that rhMG53 protects against acute injury to keratinocytes and facilitates the migration of fibroblasts in response to scratch wounding. During fibrotic remodeling, rhMG53 interferes with TGF-ß-dependent activation of myofibroblast differentiation. The resulting down-regulation of α smooth muscle actin and extracellular matrix proteins contributes to reduced scarring. Overall, these studies establish a trifunctional role for MG53 as a facilitator of rapid injury repair, a mediator of cell migration, and a modulator of myofibroblast differentiation during wound healing. Targeting the functional interaction between MG53 and TGF-ß signaling may present a potentially effective means for promoting scarless wound healing.


Assuntos
Proteínas de Transporte/fisiologia , Membrana Celular/metabolismo , Proteínas Musculares/fisiologia , Proteínas de Transporte Vesicular/fisiologia , Cicatrização/fisiologia , Células 3T3 , Actinas/metabolismo , Animais , Diferenciação Celular , Movimento Celular , Cicatriz/patologia , Colágeno Tipo I/metabolismo , Fibroblastos/citologia , Fibronectinas/metabolismo , Fibrose/patologia , Regulação da Expressão Gênica , Humanos , Hidrogéis/química , Queratinócitos/metabolismo , Proteínas de Membrana , Camundongos , Músculo Liso/metabolismo , Miofibroblastos/metabolismo , Coelhos , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/metabolismo , Pele/patologia , Proteínas com Motivo Tripartido
17.
Transplantation ; 99(11): 2274-84, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25989500

RESUMO

BACKGROUND: Renal ischemia-reperfusion (I/R) injury causes renal tubular necrosis, apoptosis, and inflammation leading to acute renal dysfunction. Recent studies have revealed that deletion of Gα12 mitigates the renal damage due to I/R injury. Our previous study showed that activation of dopamine D3 receptor (D3R) increased its linkage with Gα12, and hampered Gα12-mediated stimulation of renal sodium transport. In the present study, we used an in-vivo rat model and an in vitro study of the renal epithelial cell line (NRK52E) to investigate whether or not an increased linkage between D3R and Gα12 contributes to the protective effect of D3R on renal I/R injury. METHODS: For in vivo studies, I/R injury was induced in a rat renal unilateral clamping model. For in vitro studies, hypoxia/reoxygenation and cold storage/rewarming injuries were performed in NRK52E cells. PD128907, a D3R agonist, or vehicle, was administered 15 minutes before clamping (or hypoxia) in both the in vivo or in vitro studies. RESULTS: In the rat renal unilateral clamping model, pretreatment with PD128907 (0.2 mg/kg, intravenous) protected against renal I/R injury and increased survival rate during a long-term follow-up after 7 days. A decrease in the generation of reactive oxygen species, apoptosis, and inflammation may be involved in the D3R-mediated protection because pretreatment with PD128907 increased renal glutathione and superoxide dismutase levels and decreased malondialdehyde levels in the I/R group. The increase in cytokines (TNF-α, IL-1ß, and IL-10) and myeloperoxidase in I/R injured kidney was also prevented with a simultaneous decrease in the apoptosis of the epithelial cells and expression of apoptosis biomarkers in kidney harvested 1 day after I/R injury. The increase in the coimmunoprecipitation between D3R and Gα12 with D3R stimulation paralleled the observed renal protection from I/R injury. Moreover, in vitro studies showed that transient overexpression of Gα12 in the NRK52E cells attenuated the protective effect of PD128907 on hypoxia/reoxygenation injury. The protective effect of PD128907 might be of significance to renal transplantation because cold storage/rewarming induced injury increased lactate dehydrogenase release and decreased cell viability in NRK52E cells. Conversely, in the presence of PD128907, the increased lactate dehydrogenase release and decreased cell viability were reversed. CONCLUSIONS: These results suggest that activation of D3R, by decreasing Gα12-induced renal damage, may exert a protective effect from I/R injury.


Assuntos
Injúria Renal Aguda/prevenção & controle , Benzopiranos/farmacologia , Agonistas de Dopamina/farmacologia , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Rim/efeitos dos fármacos , Oxazinas/farmacologia , Receptores de Dopamina D3/agonistas , Traumatismo por Reperfusão/prevenção & controle , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Citoproteção , Modelos Animais de Doenças , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/genética , Glutationa/metabolismo , Mediadores da Inflamação/metabolismo , Rim/irrigação sanguínea , Rim/metabolismo , Rim/patologia , Masculino , Malondialdeído/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos Wistar , Receptores de Dopamina D3/metabolismo , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Transdução de Sinais/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Fatores de Tempo , Transfecção
18.
Clin Sci (Lond) ; 129(3): 259-69, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25783200

RESUMO

We set out to investigate whether and how SRY (sex-determining region, Y) DNAs in plasma EVs (extracellular vesicles) is involved in the pathogenesis of atherosclerosis. PCR and gene sequencing found the SRY gene fragment in plasma EVs from male, but not female, patients; EVs from male patients with CAD (coronary artery disease) had a higher SRY GCN (gene copy number) than healthy subjects. Additional studies found that leucocytes, the major source of plasma EVs, had higher SRY GCN and mRNA and protein expression in male CAD patients than controls. After incubation with EVs from SRY-transfected HEK (human embryonic kidney)-293 cells, monocytes (THP-1) and HUVECs (human umbilical vein endothelial cells), which do not endogenously express SRY protein, were found to express newly synthesized SRY protein. This resulted in an increase in the adherence factors CD11-a in THP-1 cells and ICAM-1 (intercellular adhesion molecule 1) in HUVECs. EMSA showed that SRY protein increased the promoter activity of CD11-a in THP-1 cells and ICAM-1 in HUVECs. There was an increase in THP-1 cells adherent to HUVECs after incubation with SRY-EVs. SRY DNAs transferred from EVs have pathophysiological significance in vivo; injection of SRY EVs into ApoE-/- (apolipoprotein-knockout) mice accelerated atherosclerosis. The SRY gene in plasma EVs transferred to vascular endothelial cells may play an important role in the pathogenesis of atherosclerosis; this mechanism provides a new approach to the understanding of inheritable CAD in men.


Assuntos
Aterosclerose/genética , Aterosclerose/metabolismo , Células Endoteliais/metabolismo , Leucócitos/metabolismo , Proteína da Região Y Determinante do Sexo/metabolismo , Animais , Adesão Celular , Células Cultivadas , Células Endoteliais/citologia , Endotélio Vascular/metabolismo , Espaço Extracelular/metabolismo , Humanos , Leucócitos/citologia , Masculino , Camundongos , Proteína da Região Y Determinante do Sexo/genética , Molécula 1 de Adesão de Célula Vascular/biossíntese
19.
Hypertension ; 65(1): 153-60, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25368031

RESUMO

The dopaminergic and renin-angiotensin systems interact to regulate blood pressure. Disruption of the D4 dopamine receptor gene in mice produces hypertension that is associated with increased renal angiotensin type 1 (AT1) receptor expression. We hypothesize that the D4 receptor can inhibit AT1 receptor expression and function in renal proximal tubule cells from Wistar-Kyoto (WKY) rats, but the D4 receptor regulation of AT1 receptor is aberrant in renal proximal tubule cells from spontaneously hypertensive rats (SHRs). The D4 receptor agonist, PD168077, decreased AT1 receptor protein expression in a time- and concentration-dependent manner in WKY cells. By contrast, in SHR cells, PD168077 increased AT1 receptor protein expression. The inhibitory effect of D4 receptor on AT1 receptor expression in WKY cells was blocked by a calcium channel blocker, nicardipine, or calcium-free medium, indicating that calcium is involved in the D4 receptor-mediated signaling pathway. Angiotensin II increased Na(+)-K(+) ATPase activity in WKY cells. Pretreatment with PD168077 decreased the stimulatory effect of angiotensin II on Na(+)-K(+) ATPase activity in WKY cells. In SHR cells, the inhibitory effect of D4 receptor on angiotensin II-mediated stimulation of Na(+)-K(+) ATPase activity was aberrant; pretreatment with PD168077 augmented the stimulatory effect of AT1 receptor on Na(+)-K(+) ATPase activity in SHR cells. This was confirmed in vivo; pretreatment with PD128077 for 1 week augmented the antihypertensive and natriuretic effect of losartan in SHRs but not in WKY rats. We suggest that an aberrant interaction between D4 and AT1 receptors may play a role in the abnormal regulation of sodium excretion in hypertension.


Assuntos
Pressão Sanguínea/fisiologia , Hipertensão/metabolismo , Túbulos Renais Proximais/metabolismo , Receptor Tipo 1 de Angiotensina/biossíntese , Receptores de Dopamina D4/metabolismo , Animais , Células Cultivadas , Modelos Animais de Doenças , Hipertensão/fisiopatologia , Immunoblotting , Túbulos Renais Proximais/patologia , Microscopia Confocal , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Sistema Renina-Angiotensina/fisiologia
20.
Clin Exp Hypertens ; 37(4): 288-93, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25496286

RESUMO

OBJECTIVE: The abnormal migration of vascular smooth muscle cells (VSMCs) has been implicated to contribute to lesion formation in the adult vasculature. The renin-angiotensin-aldosterone system (RAAS) is intensively involved in the pathogenesis of a variety of cardiovascular diseases. There are increasing pieces of evidence for interactions between RAAS and dopamine receptors. We hypothesize that the D3 receptor has an inhibitory effect on angiotensin II (Ang II)/aldosterone-induced VSMC migration. METHOD: In this study, embryonic thoracic aortic smooth muscle cells were cultured. VSMC migration was determined by the Boyden chamber and wound healing assays. RESULTS: VSMC migration was increased by Ang II (10(-10)-10(-7) mol/L) in a concentration-dependent manner, but not by aldosterone (10(-10)-10(-7) mol/L), and a synergistic effect of Ang II (10(-10) mol/L)/aldosterone (10(-10)mol/L) was also observed in VSMC migration. The migratory effects of Ang II alone/with aldosterone were attenuated by the activation of D3 receptors (10(-10)-10(-7) mol/L), although a D3 receptor agonist, PD128907, by itself, had no effect on VSMC migration. The inhibitory effect of the D3 receptor on Ang II/ aldosterone-mediated VSMC migration was blocked by the blocker of PKA (14-22 amide, 10(-7) mol/L), indicating that PKA was involved in the signaling pathway. CONCLUSION: These results indicate that activation of vascular D3 receptors inhibits Ang II/aldosterone-induced VSMC migration through the PKA signal pathway, which may be important in the regulation of vascular remodeling.


Assuntos
Aldosterona/farmacologia , Angiotensina II/farmacologia , Movimento Celular/efeitos dos fármacos , Hipertensão/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/patologia , Receptores de Dopamina D3/metabolismo , Aorta Torácica/patologia , Células Cultivadas , Sinergismo Farmacológico , Humanos , Hipertensão/tratamento farmacológico , Hipertensão/patologia , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA