Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.188
Filtrar
1.
J Colloid Interface Sci ; 677(Pt A): 655-664, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39116563

RESUMO

Germanium based nanomaterials are very promising as the anodes for the lithium ion batteries since their large specific capacity, excellent lithium diffusivity and high conductivity. However, their controllable preparation is still very difficult to achieve. Herein, we facilely prepare a unique carbon coating Ge nanospheres with a cubic hollow structure (Ge@C) via a hydrothermal synthesis and subsequent pyrolysis using low-cost GeO2 as precursors. The hollow Ge@C nanostructure not only provides abundant interior space to alleviate the huge volumetric expansion of Ge upon lithiation, but also facilitates the transmission of lithium ions and electrons. Moreover, experiment analyses and density functional theory (DFT) calculations unveil the excellent lithium adsorption ability, high exchange current density, low activation energy for lithium diffusion of the hollow Ge@C electrode, thus exhibiting significant lithium storage advantages with a large charge capacity (1483 mAh/g under 200 mA g-1), distinguished rate ability (710 mAh/g under 8000 mA g-1) as well as long-term cycling stability (1130 mAh/g after 900 cycles under 1000 mA g-1). Therefore, this work offers new paths for controllable synthesis and fabrication of high-performance Ge based lithium storage nanomaterials.

2.
BMC Infect Dis ; 24(1): 1093, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39358703

RESUMO

BACKGROUND: Influenza outbreaks have occurred frequently these years, especially in the summer of 2022 when the number of influenza cases in southern provinces of China increased abnormally. However, the exact evidence of the driving factors involved in the prodrome period is unclear, posing great difficulties for early and accurate prediction in practical work. METHODS: In order to avoid the serious interference of strict prevention and control measures on the analysis of influenza influencing factors during the COVID-19 epidemic period, only the impact of meteorological and air quality factors on influenza A (H3N2) in Xiamen during the non coronavirus disease 2019 (COVID-19) period (2013/01/01-202/01/24) was analyzed using the distribution lag non-linear model. Phylogenetic analysis of influenza A (H3N2) during 2013-2022 was also performed. Influenza A (H3N2) was predicted through a random forest and long short-term memory (RF-LSTM) model via actual and forecasted meteorological and influenza A (H3N2) values. RESULTS: Twenty nine thousand four hundred thirty five influenza cases were reported in 2022, accounting for 58.54% of the total cases during 2013-2022. A (H3N2) dominated the 2022 summer epidemic season, accounting for 95.60%. The influenza cases in the summer of 2022 accounted for 83.72% of the year and 49.02% of all influenza reported from 2013 to 2022. Among them, the A (H3N2) cases in the summer of 2022 accounted for 83.90% of all A (H3N2) reported from 2013 to 2022. Daily precipitation(20-50 mm), relative humidity (70-78%), low (≤ 3 h) and high (≥ 7 h) sunshine duration, air temperature (≤ 21 °C) and O3 concentration (≤ 30 µg/m3, > 85 µg/m3) had significant cumulative effects on influenza A (H3N2) during the non-COVID-19 period. The daily values of PRE, RHU, SSD, and TEM in the prodrome period of the abnormal influenza A (H3N2) epidemic (19-22 weeks) in the summer of 2022 were significantly different from the average values of the same period from 2013 to 2019 (P < 0.05). The minimum RHU value was 70.5%, the lowest TEM value was 16.0 °C, and there was no sunlight exposure for 9 consecutive days. The highest O3 concentration reached 164 µg/m3. The range of these factors were consistent with the risk factor range of A (H3N2). The common influenza A (H3N2) variant genotype in 2022 was 3 C.2a1b.2a.1a. It was more accurate to predict influenza A (H3N2) with meteorological forecast values than with actual values only. CONCLUSION: The extreme weather conditions of sustained low temperature and wet rain may have been important driving factors for the abnormal influenza A (H3N2) epidemic. A low vaccination rate, new mutated strains, and insufficient immune barriers formed by natural infections may have exacerbated this epidemic. Meteorological forecast values can aid in the early prediction of influenza outbreaks. This study can help relevant departments prepare for influenza outbreaks during extreme weather, provide a scientific basis for prevention strategies and risk warnings, better adapt to climate change, and improve public health.


Assuntos
COVID-19 , Vírus da Influenza A Subtipo H3N2 , Influenza Humana , Humanos , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/isolamento & purificação , Influenza Humana/epidemiologia , Influenza Humana/virologia , China/epidemiologia , COVID-19/epidemiologia , COVID-19/virologia , Estações do Ano , Filogenia , Epidemias , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação
3.
Small ; : e2406188, 2024 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-39402763

RESUMO

1D flexible fibers assembled 3D porous networked ceramic fiber aerogels (CFAs) are developed to overcome the brittleness of traditional ceramic particle aerogels. However, existing CFAs with disordered and quasi-ordered structures fail to balance the relationship between flexibility, robustness, and thermal insulation. Creating novel architectural CFAs with an excellent combination of performances has proven extremely challenging. In this paper, a novel strategy is adopted to fabricate porous mullite fibrous aerogels (MFAs) with ordered structures by combining fiber sedimentation and electric field-induced fiber alignment techniques. For the first time, electric field-induced alignment of ceramic fibers is utilized to prepare bulk aerogels on a large scale. The resulting MFAs exhibit ultra-low high-temperature thermal conductivity of 0.0830 W m-1 K-1 at 1000 °C, anisotropic mechanical and sound absorption performances, and multifunctionality in terms of the combination of thermal insulation, sound absorption, and hydrophobicity. The successful synthesis of such fascinating materials may provide new insights into the design and development of multifunctional CFAs for various applications.

4.
Int J Mol Sci ; 25(19)2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39408917

RESUMO

JASMONATE ZIM domain (JAZ) proteins, inhibitors of the jasmonic acid (JA) signaling pathway, are identified in different plants, such as rice and Arabidopsis. These proteins are crucial for growth, development, and abiotic stress responses. However, limited information is available regarding the JAZ family in alfalfa. This study identified 11 JAZ genes (MsJAZs) in the "Zhongmu No.1" reference genome of alfalfa. The physical and chemical properties, chromosome localization, phylogenetic relationships, gene structure, cis-acting elements, and collinearity of the 11 MsJAZ genes were subsequently analyzed. Tissue-specific analysis revealed distinct functions of different MsJAZ genes in growth and development. The expression patterns of MsJAZ genes under salt stress conditions were validated using qRT-PCR. All MsJAZ genes responded to salt stress, with varying levels of upregulation over time, highlighting their role in stress responses. Furthermore, heterogeneous expression of MsJAZ1 in Arabidopsis resulted in significantly lower seed germination and survival rates in OE-2 and OE-4 compared to the WT under 150 mM NaCl treatment. This study establishes a foundation for further exploration of the function of the JAZ family and provides significant insights into the genetic improvement of alfalfa.


Assuntos
Ciclopentanos , Regulação da Expressão Gênica de Plantas , Medicago sativa , Família Multigênica , Oxilipinas , Filogenia , Proteínas de Plantas , Medicago sativa/genética , Medicago sativa/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ciclopentanos/metabolismo , Ciclopentanos/farmacologia , Oxilipinas/metabolismo , Oxilipinas/farmacologia , Genoma de Planta , Arabidopsis/genética , Arabidopsis/metabolismo , Estresse Fisiológico/genética , Perfilação da Expressão Gênica , Estresse Salino/genética
5.
Small ; : e2406489, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39340269

RESUMO

Silicon (Si) has attracted considerable attention as a promising alternative to graphite in lithium-ion batteries (LIBs) because of its high theoretical capacity and voltage. However, the durability and cycling stability of Si-based composites have emerged as major obstacles to their widespread adoption as LIBs anode materials. To tackle these challenges, a hollow core-shell dodecahedra structure of a Si-based composite (HD-Si@C) is developed through a novel double-layer in situ growth approach. This innovative design ensures that the nano-sized Si particles are evenly distributed within a hollow carbon shell, effectively addressing issues like Si fragmentation, volume expansion, and detachment from the carbon layer during cycles. The HD-Si@C composite demonstrates remarkable structural integrity as a LIBs anode, resulting in exceptional electrochemical performance and promising practical applications, as evidenced by tests in pouch-type full cells. Notably, the composite shows outstanding cycling stability, retaining 85% of its initial capacity (713 mAh g-1) even after 3000 cycles at a high current rate of 5000 mA g-1. Additionally, the material achieves a gravimetric energy density of 369 W h kg-1, showcasing its potential for efficient energy storage solutions. This research signifies a significant step toward realizing the practical utilization of Si-based materials in the next generation of LIBs.

6.
Microorganisms ; 12(9)2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39338521

RESUMO

Today, pathogenic microorganisms are increasingly developing resistance to conventional drugs, necessitating the exploration of alternative strategies. In addressing this challenge, nano-based antibacterial agents offer a promising avenue of research. In the present study, we used an extract of Moringa oleifera, a widely recognized edible and medicinal plant, to synthesize biogenetic tellurium nanoparticles (Bio-TeNPs). Transmission electron microscopy, scanning electron microscopy, and dynamic light scattering analyses revealed that the obtained Bio-TeNPs had diameters between 20 and 50 nm, and zeta potential values of 23.7 ± 3.3 mV. Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopy revealed that the Bio-TeNPs consisted primarily of Te(0), along with some organic constituents. Remarkably, these Bio-TeNPs exhibited potent antibacterial activity against a spectrum of pathogens, including Escherichia coli, Klebsiella pneumoniae, Shigella dysenteriae, Salmonella typhimurium, Streptococcus pneumoniae, and Streptococcus agalactiae. In addition, findings from growth curve experiments, live/dead cell staining, and scanning electron microscopy observations of cell morphology demonstrated that Bio-TeNPs at a concentration of 0.07 mg/mL effectively disrupted E. coli and K. pneumoniae cells, leading to cell rupture or shrinkage. The biofilm inhibition rates of 0.7 mg/mL Bio-TeNPs against E. coli and K. pneumoniae reached 92% and 90%, respectively. In addition, 7 mg/mL Bio-TeNPs effectively eradicated E. coli from the surfaces of glass slides, with a 100% clearance rate. These outcomes underscore the exceptional antibacterial efficacy of Bio-TeNPs and highlight their potential as promising nanomaterials for combating bacterial infections.

7.
BMC Biol ; 22(1): 198, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39256700

RESUMO

BACKGROUND: The molecular mechanisms and signaling pathways involved in tooth morphogenesis have been the research focus in the fields of tooth and bone development. However, the cell population in molars at the late bell stage and the mechanisms of hard tissue formation and mineralization remain limited knowledge. RESULTS: Here, we used the rat mandibular first and second molars as models to perform single-cell RNA sequencing (scRNA-seq) analysis to investigate cell identity and driver genes related to dental mesenchymal cell differentiation during the late bell hard tissue formation stage. We identified seven main cell types and investigated the heterogeneity of mesenchymal cells. Subsequently, we identified novel cell marker genes, including Pclo in dental follicle cells, Wnt10a in pre-odontoblasts, Fst and Igfbp2 in periodontal ligament cells, and validated the expression of Igfbp3 in the apical pulp. The dynamic model revealed three differentiation trajectories within mesenchymal cells, originating from two types of dental follicle cells and apical pulp cells. Apical pulp cell differentiation is associated with the genes Ptn and Satb2, while dental follicle cell differentiation is associated with the genes Tnc, Vim, Slc26a7, and Fgfr1. Cluster-specific regulons were analyzed by pySCENIC. In addition, the odontogenic function of driver gene TNC was verified in the odontoblastic differentiation of human dental pulp stem cells. The expression of osteoclast differentiation factors was found to be increased in macrophages of the mandibular first molar. CONCLUSIONS: Our results revealed the cell heterogeneity of molars in the late bell stage and identified driver genes associated with dental mesenchymal cell differentiation. These findings provide potential targets for diagnosing dental hard tissue diseases and tooth regeneration.


Assuntos
Diferenciação Celular , Células-Tronco Mesenquimais , Dente Molar , RNA-Seq , Análise de Célula Única , Animais , Diferenciação Celular/genética , Ratos , Análise de Célula Única/métodos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , RNA-Seq/métodos , Odontogênese/genética , Análise da Expressão Gênica de Célula Única
8.
Prenat Diagn ; 44(11): 1310-1317, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39256948

RESUMO

OBJECTIVE: Thalassemia is a Mendelian-inherited blood disorder with severe consequences, including disability and mortality, making it a significant public health concern. Therefore, there is an urgent need for precise diagnostic technologies. We introduce two innovative diagnostic techniques for thalassemia, SNPscan and CNVplex, designed to enhance molecular diagnostics of thalassemia. METHODS: The SNPscan and CNVplex assays utilize variations in PCR product length and fluorescence to identify multiple mutations. In the SNPscan method, we designed three probes per locus: two 5' and one 3', and incorporated allele identification link sequences into one of the 5' probes to distinguish the alleles. The detection system was designed for 67 previously reported loci in the Chinese population for a specific genetic condition. CNVplex identifies deletion types by analyzing the specific positions of probes within the globin gene. This innovative approach enables the detection of six distinct deletional mutations, enhancing the precision of thalassemia diagnostics. We evaluated and refined the methodologies in a training cohort of 100 individuals with confirmed HBA and HBB genotypes. The validation cohort, consisting of 1647 thalassemia patients and 100 healthy controls, underwent a double-blind study. Traditional diagnostic techniques served as the control methods. RESULTS: In the training set of 100 samples, 10 mutations (Hb QS, Hb CS, Hb Westmead, CD17, CD26, CD41-42, IVS-II-654, --SEA, -α3.7 and -α4.2) were identified, consistent with those identified by traditional methods. The validation study showed that SNPscan/CNVplex offered superior molecular diagnostic capabilities for thalassemia, with 100% accuracy compared to 99.43% for traditional methods. Notably, the assay identified three previously undetected mutations in 10 cases, including two deletion mutations (Chinese Gγ(Aγδß)0 del and SEA-HPFH), and one non-deletion mutation (Hb Q-Thailand). CONCLUSIONS: The SNPscan/CNVplex assay is a cost-effective and user-friendly tool for diagnosing thalassemia, demonstrating high accuracy and reliability, and showing great potential as a primary diagnostic method in clinical practice.


Assuntos
Polimorfismo de Nucleotídeo Único , Talassemia , Humanos , Feminino , Talassemia/genética , Talassemia/diagnóstico , Estudos de Casos e Controles , Gravidez , Masculino
9.
Materials (Basel) ; 17(17)2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39274639

RESUMO

In the present research, the impacts of Ce additions at various concentrations (0, 1.0, 3.4, and 4.0 wt.%) on the evolution of the microstructure, mechanical properties, and thermal conductivity of as-cast and as-extruded Mg-3Sn alloys were investigated. The findings demonstrate that adding Ce caused the creation of a new ternary MgSnCe phase in the magnesium matrix. Some new Mg17Ce2 phases are generated in the microstructure when Ce levels reach 4%. The thermal conductivity of the Mg-3Sn alloy is significantly improved due to Ce addition, and the Mg-3Sn-3.4Ce alloy exhibits the highest thermal conductivity, up to 133.8 W/(m·K) at 298 K. After extrusion, both the thermal conductivity and mechanical properties are further improved. The thermal conductivity perpendicular to the extrusion direction of Mg-3Sn-3.4Ce alloy could achieve 136.28 W/(m·K), and the tensile and yield strengths reach 264.3 MPa and 227.2 MPa, with an elongation of 7.9%. Adding Ce decreases the dissolved Sn atoms and breaks the eutectic α-Mg and Mg2Sn network organization, leading to a considerable increase in the thermal conductivity of as-cast Mg-3Sn alloys. Weakening the deformed grain texture contributed to the further enhancement of the thermal conductivity after extrusion.

10.
Microb Pathog ; 196: 106975, 2024 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-39313133

RESUMO

Schizonepeta annua (Pall.) Schischk. has long been traditionally employed in China for its anti-inflammatory, antimicrobial, and soothing properties. This study evaluates the antibacterial properties of essential oil extracted from Schizonepeta annua (SEO) and oregano (OEO) against methicillin-resistant Staphylococcus aureus (MRSA). SEO and OEO demonstrated substantial antibacterial efficacy, with SEO exhibiting significantly enhanced antibacterial activity due to its complex composition. Mechanistic investigations revealed that both essential oils disrupt bacterial membrane integrity and biosynthetic pathways, leading to the extrusion of intracellular contents. Metabolomic analyses using GC-Q-TOF-MS highlighted SEO's selective targeting of bacterial membranes, while non-targeted metabolomics indicated significant effects on MRSA's amino acid metabolism and aminoacyl-tRNA biosynthesis. These findings suggest that SEO causes considerable damage to MRSA cell membranes and affects amino acid metabolism, supporting its traditional use and highlighting its potential in treating infections. Our results offer robust theoretical support for SEO's role as an antimicrobial agent and establish a solid foundation for its practical application in combating multidrug-resistant infections.

11.
Eco Environ Health ; 3(3): 271-280, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39252856

RESUMO

Freshwater salinization is receiving increasing global attention due to its profound influence on nitrogen cycling in aquatic ecosystems and the accessibility of water resources. However, a comprehensive understanding of the changes in river salinization and the impacts of salinity on nitrogen cycling in arid and semi-arid regions of China is currently lacking. A meta-analysis was first conducted based on previous investigations and found an intensification in river salinization that altered hydrochemical characteristics. To further analyze the impact of salinity on nitrogen metabolism processes, we evaluated rivers with long-term salinity gradients based on in situ observations. The genes and enzymes that were inhibited generally by salinity, especially those involved in nitrogen fixation and nitrification, showed low abundances in three salinity levels. The abundance of genes and enzymes with denitrification and dissimilatory nitrate reduction to ammonium functions still maintained a high proportion, especially for denitrification genes/enzymes that were enriched under medium salinity. Denitrifying bacteria exhibited various relationships with salinity, while dissimilatory nitrate reduction to ammonium bacterium (such as Hydrogenophaga and Curvibacter carrying nirB) were more inhibited by salinity, indicating that diverse denitrifying bacteria could be used to regulate nitrogen concentration. Most genera exhibited symbiotic and mutual relationships, and the highest proportion of significant positive correlations of abundant genera was found under medium salinity. This study emphasizes the role of river salinity on environment characteristics and nitrogen transformation rules, and our results are useful for improving the availability of river water resources in arid and semi-arid regions.

12.
Nutrients ; 16(17)2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39275261

RESUMO

Diabetic retinopathy (DR) is a specific microvascular problem of diabetes, which is mainly caused by hyperglycemia and may lead to rapid vision loss. Dietary polyphenols have been reported to decrease the risk of DR. Apocynum venetum L. leaves are rich in polyphenolic compounds and are popular worldwide for their health benefits as a national tea drink. Building on previous findings of antioxidant activity and aldose reductase inhibition of A. venetum, this study investigated the chemical composition of polyphenol-rich extract of A. venetum leaves (AVL) and its protective mechanism on ARPE-19 cells in hyperglycemia. Ninety-three compounds were identified from AVL by LC-MS/MS, including sixty-eight flavonoids, twenty-one organic acids, and four coumarins. AVL regulated the polyol pathway by decreasing the expression of aldose reductase and the content of sorbitol, enhancing the Na+K+-ATPase activity, and weakening intracellular oxidative stress effectively; it also could regulate the expression of autophagy-related proteins via the AMPK/mTOR/ULK1 signaling pathway to maintain intracellular homeostasis. AVL could restore the polyol pathway, inhibit oxidative stress, and maintain intracellular autophagy to protect cellular morphology and improve DR. The study reveals the phytochemical composition and protective mechanisms of AVL against DR, which could be developed as a functional food and/or candidate pharmaceutical, aiming for retina protection in diabetic retinopathy.


Assuntos
Apocynum , Autofagia , Glucose , Estresse Oxidativo , Extratos Vegetais , Folhas de Planta , Polifenóis , Epitélio Pigmentado da Retina , Humanos , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Polifenóis/análise , Folhas de Planta/química , Autofagia/efeitos dos fármacos , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/metabolismo , Glucose/metabolismo , Glucose/efeitos adversos , Apocynum/química , Estresse Oxidativo/efeitos dos fármacos , Polímeros , Linhagem Celular , Retinopatia Diabética/prevenção & controle , Retinopatia Diabética/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Transdução de Sinais/efeitos dos fármacos , Antioxidantes/farmacologia , Aldeído Redutase/metabolismo
13.
Pest Manag Sci ; 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39263914

RESUMO

BACKGROUND: Soft rot (Pectobacterium aroidearum and Dickeya) is a devastating soil-borne bacterial disease that threatens konjac production. Intercropping with false acacia has been shown to significantly reduce soft rot incidence in konjac by shifting the microbial community. However, how intercropping shapes the root bacterial community and affects soft rot incidence remains unclear. To address this, we investigated three konjac intercropping systems (false acacia, paulownia, and maize) to explore the relationships among intercropping, soft rot incidence, root bacterial community, soil enzyme activity, and soil properties. RESULTS: Konjac intercropped with false acacia exhibited the lowest soft rot incidence and the lowest abundance of pathogenic taxa. Soft rot incidence was negatively correlated with total soil nitrogen and potassium but positively correlated with total and available soil phosphorus. The bacterial community structure and function in konjac roots differed among intercropping types, mainly driven by available soil phosphorus. Beneficial microorganisms such as Bradyrhizobium and Variovorax were enriched under a false acacia intercropping system and were negatively correlated with soil-available phosphorus. Additionally, the stable bacterial community in healthy konjac roots under false acacia may make konjac less susceptible to pathogen invasion. CONCLUSION: The study showed that intercropping reduced the soft rot incidence by regulating the structure and stability of the konjac root bacterial community, and soil-available phosphorus was the main factor affecting the difference in the konjac root bacterial community, which provided a basis for the management of soil fertilization in konjac cultivation. © 2024 Society of Chemical Industry.

14.
J Anim Sci ; 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39320367

RESUMO

The popularity of functional ingredients such as probiotics and postbiotics has increased as pet owners seek ways to improve the health quality and longevity of their pets. Limited research has been conducted regarding the use of probiotics and postbiotics and their effects on canine health. The objective of this study was to evaluate the effects of daily supplementation of Bifidobacterium animalis subsp. lactis CECT 8145, in both live probiotic (PRO) and heat-treated postbiotic (POST) forms, on fecal fermentative end-products and microbiome, insulin sensitivity, serum gut hormones, oxidative stress, inflammatory biomarkers, and white blood cell gene expression of adult dogs. Eighteen adult beagles and 18 adult English pointers were used in a double-blinded placebo controlled parallel group design, with 12 animals per group (6 English pointers and 6 beagles). The study began with a 60 d adaptation period followed by a 90 d period of daily supplementation with either PRO, POST, or placebo (maltodextrin; CON). Longitudinal assessment of body weight (BW), body condition score (BCS), and pelvic circumference (PC) did not differ among dietary supplements (P > 0.05). Throughout the experimental period, fecal scores did not differ (P > 0.05), however, fecal pH was lower (P = 0.0049) in the dogs fed POST compared with CON. A higher fecal concentration of propionate (P = 0.043) was observed in dogs fed PRO and POST when compared with CON. While PRO and POST supplementation was associated with changes in bacterial composition at the family and genus level, the overall richness and diversity of the microbiome was not significantly affected. Functional analysis of the metagenome also suggests that PRO and POST supplementation induced potentially beneficial changes in the abundance of pathways involved in pathogenicity, amino acid biosynthesis and DNA repair. No differences in glycemic or insulinemic responses were observed among the groups (P > 0.05). Dogs supplemented with PRO had a higher (P < 0.05) mean white blood cell leptin relative fold gene expression compared with groups POST and CON. Serum metabolites and complete blood cells counts were within normal ranges and all dogs remained healthy throughout the study. Together, these data suggest that the PRO and POST can safely be supplemented for dogs. Moreover, the results of this study support further investigation of the role of PRO and POST in supporting parameters related to gut health and hormonal regulation.

15.
Water Res ; 267: 122472, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39305525

RESUMO

This study examined the influence of water periods on river nitrogen cycling by analysing nitrogen functional genes and bacterial communities in the Qingshui River, an upstream tributary of the Yellow River in China. Nitrate nitrogen predominated as inorganic nitrogen during the low-flow seasons, whereas salinity was highest during the high-flow seasons. Overall, the functional gene abundance increased with decreasing water volume, and nitrogen concentrations were determined by various specific gene groups. The relative abundance of bacteria carrying these genes varied significantly across water periods. The abundance of Pseudomona, Hydrogenophaga (carrying narGHI and nirB genes), and Flavobacterium (carrying nirK, norBC, and nosZ genes) significantly increased during the low-flow seasons. Nitrogen transformation bacteria exhibited both symbiotic and mutualistic relationships. Microbial network nodes and sizes decreased with decreasing water volume, whereas modularity increased. Additionally, the water period affected the functional microbial community structure by influencing specific environmental factors. Among them, SO42- primarily determined the denitrification, dissimilatory nitrate reduction to ammonium, and assimilatory nitrate reduction to ammonium communities, whereas NO2--N and Mg2+ were the main driving factors for the nitrogen-fixing and nitrifying communities, respectively. These findings have substantial implications for better understanding the reduction in river nitrogen loads in arid and semi-arid regions during different water periods.

16.
Burns Trauma ; 12: tkae031, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39282020

RESUMO

Background: Diagnosing sternal wound infection (SWI) following median sternotomy remains laborious and troublesome, resulting in high mortality rates and great harm to patients. Early intervention and prevention are critical and challenging. This study aimed to develop a simple risk prediction model to identify high-risk populations of SWI and to guide examination programs and intervention strategies. Methods: A retrospective analysis was conducted on the clinical data obtained from 6715 patients who underwent median sternotomy between January 2016 and December 2020. The least absolute shrink and selection operator (LASSO) regression method selected the optimal subset of predictors, and multivariate logistic regression helped screen the significant factors. The nomogram model was built based on all significant factors. Area under the curve (AUC), calibration curve and decision curve analysis (DCA) were used to assess the model's performance. Results: LASSO regression analysis selected an optimal subset containing nine predictors that were all statistically significant in multivariate logistic regression analysis. Independent risk factors of SWI included female [odds ratio (OR) = 3.405, 95% confidence interval (CI) = 2.535-4.573], chronic obstructive pulmonary disease (OR = 4.679, 95% CI = 2.916-7.508), drinking (OR = 2.025, 95% CI = 1.437-2.855), smoking (OR = 7.059, 95% CI = 5.034-9.898), re-operation (OR = 3.235, 95% CI = 1.087-9.623), heart failure (OR = 1.555, 95% CI = 1.200-2.016) and repeated endotracheal intubation (OR = 1.975, 95% CI = 1.405-2.774). Protective factors included bone wax (OR = 0.674, 95% CI = 0.538-0.843) and chest physiotherapy (OR = 0.446, 95% CI = 0.248-0.802). The AUC of the nomogram was 0.770 (95% CI = 0.745-0.795) with relatively good sensitivity (0.798) and accuracy (0.620), exhibiting moderately good discernment. The model also showed an excellent fitting degree on the calibration curve. Finally, the DCA presented a remarkable net benefit. Conclusions: A visual and convenient nomogram-based risk calculator built on disease-associated predictors might help clinicians with the early identification of high-risk patients of SWI and timely intervention.

17.
ACS Nano ; 18(34): 23579-23598, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39150904

RESUMO

Considering the profound impact of structure on heterojunction catalysts, the rational design of emerging catalysts with optimized energy band structures is required for antitumor efficiency. Herein, we select titanium nitride (TiN) and Pt to develop a multifunctional Schottky heterojunction named Pt/H-TiN&SRF (PHTS) nanoparticles (NPs) with a narrowed bandgap to accomplish "four birds with one stone" involving enzyo/sono/photo three modals and additional ferroptosis. The in situ-grown Pt NPs acted as electron traps that can cause the energy band to bend upward and form a Schottky barrier, thereby facilitating the separation of electron/hole pairs in exogenous stimulation catalytic therapy. In addition, endogenous catalytic reactions based on peroxidase (POD)- and catalase (CAT)-mimicking activities can also be amplified, triggering intense oxidative stress, in which CAT-like activity decomposes endogenous H2O2 into O2 alleviating hypoxia and provides reactants for sonodynamic therapy. Moreover, PHTS NPs can elicit mild photothermal therapy with boosted photothermal properties as well as ferroptosis with loaded ferroptosis inducer sorafenib for effective tumor ablation and apoptosis-ferroptosis synergistic tumor inhibitory effect. In summary, this paper proposes an attractive design for antitumor strategies and highlights findings for heterojunction catalytic therapy with potential in tumor theranostics.


Assuntos
Antineoplásicos , Titânio , Animais , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/química , Humanos , Titânio/química , Titânio/farmacologia , Ferroptose/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Platina/química , Platina/farmacologia , Sorafenibe/farmacologia , Sorafenibe/química , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Terapia Fototérmica , Nanopartículas/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Camundongos Endogâmicos BALB C
18.
Heliyon ; 10(15): e35078, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39165983

RESUMO

Objective: To assess the changes in QRS duration (△QRSd) before and after primary percutaneous coronary intervention(PPCI) regarding the relation of left ventricular ejection fraction (LVEF) in patients after a first acute ST segment elevation myocardial infarction (STEMI) treated with primary percutaneous coronary intervention (PPCI). Methods: A total of 244 patients with STEMI were enrolled, and clinical, biochemical, and angiographic parameters were compared between two groups based on LVEF at 6 months post-discharge. QRS duration (QRSd) was analyzed in relation to LVEF, and feature selection using least absolute shrinkage and selection operator(LASSO) regression was performed. Logistic regression analysis and receiver operating characteristic (ROC) curve evaluation were conducted to identify predictors and assess model efficacy. Results: Significant differences were observed between the two groups in terms of various parameters, including age, time from symptom onset to balloon dilation (STB), N-terminal pro B-type natriuretic peptide (NT-proBNP) levels, Left ventricular end-diastolic volume(LVEDV) at baseline, left ventricular end-systolic volume(LVESV)at baseline, left ventricular end-diastolic diameter (LVDD)at baseline and six months, hospital length of stay(days), ST-segment resolution (STR), the left anterior descending artery as the infarction-related artery (IRA-LAD), frequency of TIMI 3 flow post PPCI, thrombus aspiration and/or intracoronary thrombolysis, the use of tirofiban, and the number of implanted stents(stents).In addition, postoperative QRSd and △QRSd were significantly higher in patients with left ventricular systolic dysfunction(LVSD). LASSO regression selected six variables as predictors of postoperative LVEF. Logistic regression analysis identified age, STB, NT-proBNP, LVESV at baseline,△QRSd, and stents, as independent factors associated with LVSD within six months for patients with a first occurrence of STEMI. The models achieved AUC values of 0.906 (using ΔQRSd),0.922(using 6 variables excluding ΔQRSd) and 0.962 (using 6 variables). Conclusion: This study identified ΔQRSd as a potential predictor of LVSD in patients with STEMI. The developed models showed good efficacy in predicting postoperative LVEF changes. These findings may contribute to risk stratification and individualized management strategies for STEMI patients.

19.
BMC Plant Biol ; 24(1): 800, 2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39179986

RESUMO

BACKGROUND: The mitogen-activated protein kinase (MAPK) cascade is crucial cell signal transduction mechanism that plays an important role in plant growth and development, metabolism, and stress responses. The MAPK cascade includes three protein kinases, MAPK, MAPKK, and MAPKKK. The three protein kinases mediate signaling to downstream response molecules by sequential phosphorylation. The MAPK gene family has been identified and analyzed in many plants, however it has not been investigated in alfalfa. RESULTS: In this study, Medicago sativa MAPK genes (referred to as MsMAPKs) were identified in the tetraploid alfalfa genome. Eighty MsMAPKs were divided into four groups, with eight in group A, 21 in group B, 21 in group C and 30 in group D. Analysis of the basic structures of the MsMAPKs revealed presence of a conserved TXY motif. Groups A, B and C contained a TEY motif, while group D contained a TDY motif. RNA-seq analysis revealed tissue-specificity of two MsMAPKs and tissue-wide expression of 35 MsMAPKs. Further analysis identified MsMAPK members responsive to drought, salt, and cold stress conditions. Two MsMAPKs (MsMAPK70 and MsMAPK75) responds to salt and cold stresses; two MsMAPKs (MsMAPK60 and MsMAPK73) responds to cold and drought stresses; four MsMAPKs (MsMAPK1, MsMAPK33, MsMAPK64 and MsMAPK71) responds to salt and drought stresses; and two MsMAPKs (MsMAPK5 and MsMAPK7) responded to all three stresses. CONCLUSION: This study comprehensively identified and analysed the alfalfa MAPK gene family. Candidate genes related to abiotic stresses were screened by analysing the RNA-seq data. The results provide key information for further analysis of alfalfa MAPK gene functions and improvement of stress tolerance.


Assuntos
Medicago sativa , Proteínas Quinases Ativadas por Mitógeno , Estresse Fisiológico , Medicago sativa/genética , Medicago sativa/enzimologia , Medicago sativa/fisiologia , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Estresse Fisiológico/genética , Família Multigênica , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia , Secas
20.
Front Cell Dev Biol ; 12: 1447093, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39211390

RESUMO

Ubiquitination is a crucial post-translational modification of proteins that mediates the degradation or functional regulation of specific proteins. This process participates in various biological processes such as cell growth, development, and signal transduction. E3 ubiquitin ligases play both positive and negative regulatory roles in osteogenesis and differentiation by ubiquitination-mediated degradation or stabilization of transcription factors, signaling molecules, and cytoskeletal proteins. These activities affect the proliferation, differentiation, survival, and bone formation of osteoblasts (OBs). In recent years, advances in genomics, transcriptomics, and proteomics have led to a deeper understanding of the classification, function, and mechanisms of action of E3 ubiquitin ligases. This understanding provides new insights and approaches for revealing the molecular regulatory mechanisms of bone formation and identifying therapeutic targets for bone metabolic diseases. This review discusses the research progress and significance of the positive and negative regulatory roles and mechanisms of E3 ubiquitin ligases in the process of osteogenic differentiation. Additionally, the review highlights the role of E3 ubiquitin ligases in bone-related diseases. A thorough understanding of the role and mechanisms of E3 ubiquitin ligases in osteogenic differentiation could provide promising therapeutic targets for bone tissue engineering based on stem cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA