Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 368, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36690634

RESUMO

Selective two-electron (2e-) oxygen reduction reaction (ORR) offers great opportunities for hydrogen peroxide (H2O2) electrosynthesis and its widespread employment depends on identifying cost-effective catalysts with high activity and selectivity. Main-group metal and nitrogen coordinated carbons (M-N-Cs) are promising but remain largely underexplored due to the low metal-atom density and the lack of understanding in the structure-property correlation. Here, we report using a nanoarchitectured Sb2S3 template to synthesize high-density (10.32 wt%) antimony (Sb) single atoms on nitrogen- and sulfur-codoped carbon nanofibers (Sb-NSCF), which exhibits both high selectivity (97.2%) and mass activity (114.9 A g-1 at 0.65 V) toward the 2e- ORR in alkaline electrolyte. Further, when evaluated with a practical flow cell, Sb-NSCF shows a high production rate of 7.46 mol gcatalyst-1 h-1 with negligible loss in activity and selectivity in a 75-h continuous electrolysis. Density functional theory calculations demonstrate that the coordination configuration and the S dopants synergistically contribute to the enhanced 2e- ORR activity and selectivity of the Sb-N4 moieties.


Assuntos
Peróxido de Hidrogênio , Metais , Humanos , Antimônio , Carbono , Hipóxia , Nitrogênio , Enxofre
2.
Adv Mater ; 35(15): e2211398, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36691878

RESUMO

Metal- and nitrogen-doped nanocarbons (M-N-Cs) are promising alternatives to precious metals for catalyzing electrochemical energy conversion processes. However, M-N-Cs synthesized by high-temperature pyrolysis frequently suffer from compositional heterogeneity with the simultaneous presence of atomically dispersed M-Nx sites and crystalline metal nanoparticles (NPs), which hinders the identification of active sites and rational optimization in performance. Herein, a universal and efficient strategy is reported to obtain both precious- and nonprecious-metal-based M-N-Cs (M = Pt, Fe, Co, Ni, Mn, Cu, Zn) with exclusive atomic dispersion by making use of ammonium iodide as the etchant to remove excessive metal aggregates at high temperature. Taking Pt-N-C as a proof-of-concept demonstration, the complete removal of Pt NPs in Pt-N-C enables clarification on the contributions of the atomic Pt-Nx moieties and Pt NPs to the catalytic activity toward the hydrogen evolution reaction. Combined electrochemical measurements and theoretical calculations identify that the atomic Pt-Nx moieties by themselves possess negligible activity, but they can significantly boost the activity of the Pt NPs via the synergistic effect.

3.
Small ; 18(19): e2201139, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35388966

RESUMO

Graphene-supported single-atom catalysts (SACs) are promising alternatives to precious metals for catalyzing the technologically important hydrogen evolution reaction (HER), but their performances are limited by the low intrinsic activity and insufficient mass transport. Herein, a highly HER-active graphene-supported Co-N-C SAC is reported with unique design features in the morphology of the substrate and the microenvironment of the single metal sites: i) the crumpled and scrolled morphology of the graphene substrate circumvents the issues encountered by stacked nanoplatelets, resulting in improved exposure of the electrode/electrolyte interfaces (≈10 times enhancement); ii) the in-plane holes in graphene preferentially orientate the Co atoms at the edge sites with low-coordinated Co-N3 configuration that exhibits enhanced intrinsic activity (≈2.6 times enhancement compared to the conventional Co-N4 moiety), as evidenced by detailed experiments and density functional theory calculations. As a result, this catalyst exhibits significantly improved HER activity with an overpotential (η) of merely 82 mV at 10 mA cm-2 , a small Tafel slope of 59.0 mV dec-1 and a turnover frequency of 0.81 s-1 at η = 100 mV, ranking it among the best Co-N-C SACs.

4.
Small ; 18(3): e2103824, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34729914

RESUMO

Electrochemical synthesis of hydrogen peroxide (H2 O2 ) via the 2-electron oxygen reduction reaction (ORR) has emerged as a promising alternative to the energy-intensive anthraquinone process and catalysts combining high selectivity with superior activity are crucial for enhancing the efficiency of H2 O2 electrosynthesis. In recent years, single-atom catalysts (SACs) with the merits of maximum atom utilization efficiency, tunable electronic structure, and high mass activity have attracted extensive attention for the selective reduction of O2 to H2 O2 . Although considerable improvements are made in the performance of SACs toward the 2-electron ORR process, the principles for modulating the catalytic properties of SACs by adjusting the electronic structure remain elusive. In this review, the regulation strategies for optimizing the 2-electron ORR activity and selectivity of SACs by different methods of electronic structure tuning, including the altering of the central metal atoms, the modulation of the coordinated atoms, the substrate effect, and alloy engineering are summarized. Finally, the challenges and future prospects of advanced SACs for H2 O2 electrosynthesis via the 2-electron ORR process are proposed.


Assuntos
Peróxido de Hidrogênio , Metais , Catálise , Eletrônica , Peróxido de Hidrogênio/química , Metais/química , Oxigênio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA