RESUMO
The dynamics of strongly coupled polariton systems integrated with 2D transition metal dichalcogenides (TMDs) is key to enabling efficient coherent processes and achieving high-performance TMD-based polaritonic devices, such as ultralow-threshold polariton lasers and ultrafast optical switches. However, there has been a lack of a comprehensive understanding of the excited state dynamics in TMD-based polariton systems. In this work, ultrafast pump-probe optical spectroscopy is used to investigate the room temperature dynamics of the polariton systems consisting of TMD monolayer excitons strongly coupled with Bloch surface waves (BSWs) supported by all-dielectric photonic structures. The transient response is found for both above-exciton energy pumping and polariton-resonant pumping. The excited state population and ultrafast coherent coupling of the exciton reservoir and lower polariton (LP) branch are observed for resonant pumping. Moreover, it is found that the transient response of the LP first decays on a short-time scale of 0.15-0.25 ps compared to the calculated intrinsic lifetime of 0.11-0.20 ps, and is followed by a longer decay (>100 ps) due to the dynamical evolution of the exciton reservoir. The results provide a fundamental understanding of the dynamics of TMD-based polariton systems while showing the potential for achieving efficient coherent optical processes for device applications.
RESUMO
Schiff bases are a crucial component in various functional materials but often exhibit non-emissive behavior which significantly limits their potential applications as luminescent materials. However, traditional approaches to convert them into aggregate emitters often require intricate molecular design, tedious synthesis, and significant time and resource consumption. Herein, we present a cocrystallization-induced emission strategy that can transform non-emissive (hetero)aryl-substituted Schiff bases into green-yellow to yellow aggregate emitters via even simple grinding of a mixture of Schiff bases and 1,2,4,5-tetracyanobenzene (TCB) mixtures. The combined experimental and theoretical analysis revealed that the cocrystallization inhibits the C=N isomerization and promotes face-to-face π-π interaction, which restricts access to both the dark state and canonical intersection to ultimately induce emission. Furthermore, the induced emission enables the observation of solid-state molecular diffusion through fluorescence signals, advancing white light emission diodes, and notably, solution-processed organic light-emitting diodes based on cocrystal for the first time. This study not only highlights the potential of developing new C=N structural motifs for AIEgens but also could boost advancements in related structure motifs like C=C and N=N.
RESUMO
The manipulation of molecular excited state processes through strong coupling has attracted significant interest for its potential to provide precise control of photochemical phenomena. However, the key limiting factor for achieving this control has been the "dark-state problem", in which photoexcitation populates long-lived reservoir states with energies and dynamics similar to those of bare excitons. Here, we use a sensitive ultrafast transient reflection method with momentum and spectral resolution to achieve the selective excitation of organic exciton-polaritons in open photonic cavities. We show that the energy dispersions of these systems allow us to avoid the parasitic effect of the reservoir states. Under phase-matching conditions, we observe the direct population and decay of polaritons on time scales of less than 100 fs and find that momentum scattering processes occur on even faster time scales. We establish that it is possible to overcome the "dark state problem" through the careful design of strongly coupled systems.
RESUMO
Rapid eye movement sleep behavior disorder (RBD) has a close relationship with Parkinson's disease (PD) and was even regarded as the most reliable hallmark of prodromal PD. RBD might have similar changes in gut dysbiosis to PD, but the relationship between RBD and PD in gut microbial alterations is rarely studied. In this study, we aim to investigate whether there were consistent changes between RBD and PD in gut microbiota, and found some specific biomarkers in RBD that might indicate phenoconversion to PD. Alpha-diversity showed no remarkable difference and beta-diversity showed significant differences based on the unweighted (R = 0.035, P = 0.037) and weighted (R = 0.0045, P = 0.008) UniFrac analysis among idiopathic RBD (iRBD), PD with RBD, PD without RBD and normal controls (NC). Enterotype distribution indicated iRBD, PD with RBD and PD without RBD were Ruminococcus-dominant while NC were Bacteroides-dominant. 7 genera (4 increased: Aerococcus, Eubacterium, Gordonibacter and Stenotrophomonas, 3 decreased: Butyricicoccus, Faecalibacterium and Haemophilus) were consistently changed in iRBD and PD with RBD. Among them, 4 genera (Aerococcus, Eubacterium, Butyricicoccus, Faecalibacterium) remained distinctive in the comparison between PD with RBD and PD without RBD. Through clinical correlation analysis, Butyricicoccus and Faecalibacterium were found negatively correlated with the severity of RBD (RBD-HK). Functional analysis showed iRBD had similarly increased staurosporine biosynthesis to PD with RBD. Our study indicates that RBD had similar gut microbial changes to PD. Decreased Butyricicoccus and Faecalibacterium might be potential hallmarks of phenoconversion of RBD to PD.
Assuntos
Microbioma Gastrointestinal , Doença de Parkinson , Transtorno do Comportamento do Sono REM , Humanos , Doença de Parkinson/complicações , BiomarcadoresRESUMO
The evolution of molecular platforms for singlet fission (SF) chromophores has fueled the quest for new compounds capable of generating triplets quantitatively at fast time scales. As the exploration of molecular motifs for SF has diversified, a key challenge has emerged in identifying when the criteria for SF have been satisfied. Here, we show how covalently bound molecular dimers uniquely provide a set of characteristic optical markers that can be used to distinguish triplet pair formation from processes that generate an individual triplet. These markers are contained within (i) triplet charge-transfer excited state absorption features, (ii) kinetic signatures of triplet-triplet annihilation processes, and (iii) the modulation of triplet formation rates using bridging moieties between chromophores. Our assignments are verified by time-resolved electron paramagnetic resonance (EPR) measurements, which directly identify triplet pairs by their electron spin and polarization patterns. We apply these diagnostic criteria to dimers of acenothiophene derivatives in solution that were recently reported to undergo efficient intermolecular SF in condensed media. While the electronic structure of these heteroatom-containing chromophores can be broadly tuned, the effect of their enhanced spin-orbit coupling and low-energy nonbonding orbitals on their SF dynamics has not been fully determined. We find that SF is fast and efficient in tetracenothiophene but that anthradithiophene exhibits fast intersystem crossing due to modifications of the singlet and triplet excited state energies upon functionalization of the heterocycle. We conclude that it is not sufficient to assign SF based on comparisons of the triplet formation kinetics between monomer and multichromophore systems.
RESUMO
Singlet fission and triplet-triplet annihilation upconversion are two multiexciton processes intimately related to the dynamic interaction between one high-lying energy singlet and two low-lying energy triplet excitons. Here, we introduce a series of dendritic macromolecules that serve as platform to study the effect of interchromophore interactions on the dynamics of multiexciton generation and decay as a function of dendrimer generation. The dendrimers (generations 1-4) consist of trimethylolpropane core and 2,2-bis(methylol)propionic acid (bis-MPA) dendrons that provide exponential growth of the branches, leading to a corona decorated with pentacenes for SF or anthracenes for TTA-UC. The findings reveal a trend where a few highly ordered sites emerge as the dendrimer generation grows, dominating the multiexciton dynamics, as deduced from optical spectra, and transient absorption spectroscopy. While the dendritic structures enhance TTA-UC at low annihilator concentrations in the largest dendrimers, the paired chromophore interactions induce a broadened and red-shifted excimer emission. In SF dendrimers of higher generations, the triplet dynamics become increasingly dominated by pairwise sites exhibiting strong coupling (Type II), which can be readily distinguished from sites with weaker coupling (Type I) by their spectral dynamics and decay kinetics.
RESUMO
INTRODUCTION: At present, the incidence of diabetes mellitus (DM) is gradually increasing globally. In clinical practice, many patients with diabetes with apical periodontitis (AP) have poor and slow healing of periapical lesions. However, the potential relationship between the 2 is still unclear and controversial. The consensus is that DM can be deemed a risk factor for AP in endodontically-treated teeth. Therefore, we pooled existing studies and carried out a meta-analysis to explore the potential association between the 2. METHODS: Studies that met the inclusion criteria were selected from the database, and relevant data were extracted. Stata SE 17.0 software was used to analyze the relevant data, and the Newcastle-Ottawa Scale was used to assess the literature's quality. The pooled odds ratio (OR) with a 95% confidence interval (CI) was used to determine the strength of the association between DM and the prevalence of AP after root canal treatment (RCT). RESULTS: After searching, 262 relevant studies were retrieved, fifteen of which met the inclusion criteria. A total of 1087 patients with 2226 teeth were included in this meta-analysis. According to the findings, diabetics showed a higher prevalence of AP after RCT than controls at the tooth level (OR = 1.51, 95% CI = 1.22-1.87, P < .01). At the patient level, DM increased the probability of developing AP in RCT teeth more than 3 times (OR = 3.38, 95% CI = 1.65-6.93, P < .01). Additionally, subgroup analysis was performed by blood glucose status, preoperative AP, and study design. Except for the status of blood glucose, the results were significant in the other 2 groups (P < .05). CONCLUSIONS: Available scientific evidence suggests that DM may increase the risk of AP in endodontically-treated teeth. In teeth with preoperative AP, DM might promote the development of AP.
Assuntos
Diabetes Mellitus , Periodontite Periapical , Dente não Vital , Humanos , Dente não Vital/complicações , Dente não Vital/epidemiologia , Glicemia , Diabetes Mellitus/epidemiologia , Tratamento do Canal Radicular/efeitos adversos , Periodontite Periapical/complicações , Periodontite Periapical/epidemiologia , Periodontite Periapical/terapia , PrevalênciaRESUMO
AIMS: To compare the fecal levels of short-chain fatty acids (SCFAs) in patients with mild cognitive impairment (MCI) and normal controls (NCs) and to examine whether fecal SCFAs could be used as the biomarker for the identification of patients with MCI. To examine the relationship between fecal SCFAs and amyloid-ß (Aß) deposition in the brain. METHODS: A cohort of 32 MCI patients, 23 Parkinson's disease (PD) patients, and 27 NC were recruited in our study. Fecal levels of SCFAs were measured using chromatography and mass spectrometry. Disease duration, ApoE genotype, body mass index, constipation, and diabetes were evaluated. To assess cognitive impairment, we used the Mini-Mental Status Examination (MMSE). To assess brain atrophy, the degree of medial temporal atrophy (MTA score, Grade 0-4) was measured by structural MRI. Aß positron emission tomography with 18 F-florbetapir (FBP) was performed in seven MCI patients at the time of stool sampling and in 28 MCI patients at an average of 12.3 ± 0.4 months from the time of stool sampling to detect and quantify Aß deposition in the brain. RESULTS: Compared with NC, MCI patients had significantly lower fecal levels of acetic acid, butyric acid, and caproic acid. Among fecal SCFAs, acetic acid performed the best in discriminating MCI from NC, achieved an AUC of 0.752 (p = 0.001, 95% CI: 0.628-0.876), specificity of 66.7%, and sensitivity of 75%. By combining fecal levels of acetic acid, butyric acid, and caproic acid, the diagnostic specificity was significantly improved, reaching 88.9%. To better verify the diagnostic performance of SCFAs, we randomly assigned 60% of participants into training dataset and 40% into testing dataset. Only acetic acid showed significantly difference between these two groups in the training dataset. Based on the fecal levels of acetic acid, we achieved the ROC curve. Next, the ROC curve was evaluated in the independent test data and 61.5% (8 in 13) of patients with MCI, and 72.7% (8 in 11) of NC could be identified correctly. Subgroup analysis showed that reduced fecal SCFAs in MCI group were negatively associated with Aß deposition in cognition-related brain regions. CONCLUSION: Reductions in fecal SCFAs were observed in patients with MCI compared with NC. Reduced fecal SCFAs were negatively associated with Aß deposition in cognition-related brain regions in MCI group. Our findings suggest that gut metabolite SCFAs have the potential to serve as early diagnostic biomarkers for distinguishing patients with MCI from NC and could serve as potential targets for preventing AD.
Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Caproatos , Ácido Butírico , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/complicações , Peptídeos beta-Amiloides/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Ácidos Graxos Voláteis , Acetatos , Atrofia/complicações , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/complicaçõesRESUMO
The occurrence of polycyclic aromatic hydrocarbon (PAH) derivatives in the environment is of growing concern because they exhibit higher toxicity than their parent PAHs. This study evaluated the large-scale occurrence and spatiotemporal distribution of 16 PAHs and 14 oxygenated PAHs (OPAHs) in urban agricultural soils from seven districts of Guangzhou City, China. Linear correlation analysis was conducted to explore the relationship between PAH and OPAH occurrence and a series of parameters. The compositional analysis, principal component analysis, diagnostic ratios, and principal component analysis coupled with a multiple linear regression model were used to identify the sources of PAHs and OPAHs in the soils. The average concentrations of ΣPAHs and ΣOPAHs (59.6 ± 31.1-213 ± 115.5 µg/kg) during the flood season were significantly higher than those during the dry season (42.1 ± 13.3-157.2 ± 98.2 µg/kg), which were due to relatively strong wet deposition during the flood season and weak secondary reactions during the dry season. Linear correlation analysis showed that soil properties, industrial activities, and agricultural activities (r = 0.27-0.96, p < 0.05) were responsible for the spatial distribution of PAHs during the dry season. The PAH distribution was mainly affected by precipitation during the flood season. The concentrations of ΣOPAHs were only related to the soil properties during the dry season because their occurrence was sensitive to secondary reactions, climate and meteorological conditions, and their water solubility. Our results further showed that coal combustion and traffic emissions were the dominant origins of PAHs and OPAHs during both the seasons. Wet deposition and runoff-induced transport also contributed to PAH and OPAH occurrence during the flood season. The results of this study can improve our understanding of the environmental risks posed by PAHs and OPAHs.
Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Solo , Monitoramento Ambiental/métodos , Poluentes do Solo/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , ChinaRESUMO
Quantum interference (QI)-the constructive or destructive interference of conduction pathways through molecular orbitals-plays a fundamental role in enhancing or suppressing charge and spin transport in organic molecular electronics. Graphical models were developed to predict constructive versus destructive interference in polyaromatic hydrocarbons and have successfully estimated the large conductivity differences observed in single-molecule transport measurements. A major challenge lies in extending these models to excitonic (photoexcited) processes, which typically involve distinct orbitals with different symmetries. Here we investigate how QI models can be applied as bridging moieties in intramolecular singlet-fission compounds to predict relative rates of triplet pair formation. In a series of bridged intramolecular singlet-fission dimers, we found that destructive QI always leads to a slower triplet pair formation across different bridge lengths and geometries. A combined experimental and theoretical approach reveals the critical considerations of bridge topology and frontier molecular orbital energies in applying QI conductance principles to predict rates of multiexciton generation.
RESUMO
INTRODUCTION: Cognitive training and physical exercise have shown positive effects on delaying progression of mild cognitive impairment (MCI) to dementia. METHODS: We explored the enhancing effect from Tai Chi when it was provided with cognitive training for MCI. In the first 12 months, the cognitive training group (CT) had cognitive training, and the mixed group (MixT) had additional Tai Chi training. In the second 12 months, training was only provided for a subgroup of MixT. RESULTS: In the first 12 months, MixT and CT groups were benefited from training. Compared to the CT group, MixT had additional positive effects with reference to baseline. In addition, Compared to short-time training, prolonged mixed training further delayed decline in global cognition and memory. Functional magnetic resonance imaging showed more increased regional activity in both CT and MixT. DISCUSSION: Tai Chi enhanced cognitive training effects in MCI. Moreover, Tai Chi and cognitive mixed training showed effects on delaying cognitive decline.
Assuntos
Disfunção Cognitiva , Tai Chi Chuan , Humanos , Tai Chi Chuan/métodos , Tai Chi Chuan/psicologia , Treino Cognitivo , Resultado do Tratamento , Disfunção Cognitiva/terapia , Disfunção Cognitiva/psicologia , CogniçãoRESUMO
Gliomas are the most common primary brain tumors and are highly malignant with a poor prognosis. Pyroptosis, an inflammatory form of programmed cell death, promotes the inflammatory cell death of cancer. Studies have demonstrated that pyroptosis can promote the inflammatory cell death (ICD) of cancer, thus affecting the prognosis of cancer patients. Therefore, genes that control pyroptosis could be a promising candidate bio-indicator in tumor therapy. The function of pyroptosis-related genes (PRGs) in gliomas was investigated based on the Chinese Glioma Genome Atlas (CGGA), the Cancer Genome Atlas (TCGA) and the Repository of Molecular Brain Neoplasia Data (Rembrandt) databases. In this study, using the non-negative matrix factorization (NMF) clustering method, 26 PRGs from the RNA sequencing data were divided into two subgroups. The LASSO and Cox regression was used to develop a 4-gene (BAX, Caspase-4, Caspase-8, PLCG1) risk signature, and all glioma patients in the CGGA, TCGA and Rembrandt cohorts were divided into low- and high-risk groups. The results demonstrate that the gene risk signature related to clinical features can be used as an independent prognostic indicator in glioma patients. Moreover, the high-risk subtype had rich immune infiltration and high expression of immune checkpoint genes in the tumor immune microenvironment (TIME). The analysis of the Submap algorithm shows that patients in the high-risk group could benefit more from anti-PD1 treatment. The risk characteristics associated with pyroptosis proposed in this study play an essential role in TIME and can potentially predict the prognosis and immunotherapeutic response of glioma patients.
Assuntos
Neoplasias Encefálicas , Glioma , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Caspase 8/genética , Caspase 8/metabolismo , Regulação Neoplásica da Expressão Gênica , Glioma/genética , Glioma/metabolismo , Glioma/terapia , Humanos , Imunoterapia , Piroptose/genética , Microambiente Tumoral/genética , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismoRESUMO
Glioblastoma (GBM) is the most common malignant craniocerebral tumor. The treatment of this cancer is difficult due to its high heterogeneity and immunosuppressive microenvironment. Ferroptosis is a newly found non-apoptotic regulatory cell death process that plays a vital role in a variety of brain diseases, including cerebral hemorrhage, neurodegenerative diseases, and primary or metastatic brain tumors. Recent studies have shown that targeting ferroptosis can be an effective strategy to overcome resistance to tumor therapy and immune escape mechanisms. This suggests that combining ferroptosis-based therapies with other treatments may be an effective strategy to improve the treatment of GBM. Here, we critically reviewed existing studies on the effect of ferroptosis on GBM therapies such as chemotherapy, radiotherapy, immunotherapy, and targeted therapy. In particular, this review discussed the potential of ferroptosis inducers to reverse drug resistance and enhance the sensitivity of conventional cancer therapy in combination with ferroptosis. Finally, we highlighted the therapeutic opportunities and challenges facing the clinical application of ferroptosis-based therapies in GBM. The data generated here provide new insights and directions for future research on the significance of ferroptosis-based therapies in GBM.
RESUMO
Essential tremor (ET) is the most common movement disorder and share overlapping symptoms with Parkinson's disease (PD), making differential diagnosis challenging. Gut dysbiosis is regarded crucial in the pathogenesis of PD. Since ET patients also has comorbidity in gastrointestinal disorders, the relationship between gut microbiota and ET really worth investigating and may help distinguishing ET from PD. Fecal samples from 54 ET, 67 de novo PD and 54 normal controls (NC) were collected for 16S ribosomal RNA gene sequencing and quantitative real-time PCR. ET showed lower species richness (Chao1 index) than NC and PD. ET was with Bacteroides-dominant enterotype, while PD was with Ruminococcus-dominant enterotype. Compared with NC, 7 genera were significantly reduced in ET, 4 of which (Ruminococcus, Romboutsia, Mucispirillum, and Aeromonas) were identified to be distinctive with an area under the curve (AUC) of 0.705. Compared to PD, 26 genera were found significantly different from ET, 4 of which (Bacteroides, Fusobacterium, Phascolarctobacterium, and Lachnospira) were found distinguishable with an AUC of 0.756. Clinical association results indicated that Proteus was associated with disease severity (TETRAS) of ET, while Klebsiella was linked to depression and anxiety in ET. Functional predictions revealed that 4 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were altered in ET. This study reveals gut dysbiosis in ET and it provides new insight into the pathogenesis of ET and helps distinguishing ET from PD.
RESUMO
Singlet fission is commonly defined as the generation of two triplet excitons from a single absorbed photon. However, ambiguities within this definition arise due to the complexity of the various double triplet states that exist in SF chromophores and the corresponding interconversion processes. To clarify this process, singlet fission is frequently depicted as sequential two-step conversion in which a singlet exciton decays into a bound triplet-pair biexciton state that dissociates into two "free" triplet excitons. However, this model discounts the potential for direct harvesting from the coupled biexciton state. Here, it is demonstrated that individual triplet excitons can be extracted directly from a bound triplet pair. It is demonstrated that due to the requirement for geminate triplet-triplet annihilation in intramolecular singlet fission compounds, unique spectral and kinetic signatures can be used to quantify triplet-pair harvesting yields. An internal quantum efficiency for triplet exciton transfer from the triplet pair of >50%, limited only by the solubility of the compounds is achieved. The harvesting process is not dependent on the net multiplicity of the triplet-pair state, suggesting that an explicit, independent dissociation step is not a requirement for using triplet pairs to do chemical or electrical work.
RESUMO
BACKGROUND: Tai Chi has been shown to improve motor symptoms in Parkinson's disease (PD), but its long-term effects and the related mechanisms remain to be elucidated. In this study, we investigated the effects of long-term Tai Chi training on motor symptoms in PD and the underlying mechanisms. METHODS: Ninety-five early-stage PD patients were enrolled and randomly divided into Tai Chi (n = 32), brisk walking (n = 31) and no-exercise (n = 32) groups. At baseline, 6 months and 12 months during one-year intervention, all participants underwent motor symptom evaluation by Berg balance scale (BBS), Unified PD rating-scale (UPDRS), Timed Up and Go test (TUG) and 3D gait analysis, functional magnetic resonance imaging (fMRI), plasma cytokine and metabolomics analysis, and blood Huntingtin interaction protein 2 (HIP2) mRNA level analysis. Longitudinal self-changes were calculated using repeated measures ANOVA. GEE (generalized estimating equations) was used to assess factors associated with the longitudinal data of rating scales. Switch rates were used for fMRI analysis. False discovery rate correction was used for multiple correction. RESULTS: Participants in the Tai Chi group had better performance in BBS, UPDRS, TUG and step width. Besides, Tai Chi was advantageous over brisk walking in improving BBS and step width. The improved BBS was correlated with enhanced visual network function and downregulation of interleukin-1ß. The improvements in UPDRS were associated with enhanced default mode network function, decreased L-malic acid and 3-phosphoglyceric acid, and increased adenosine and HIP2 mRNA levels. In addition, arginine biosynthesis, urea cycle, tricarboxylic acid cycle and beta oxidation of very-long-chain fatty acids were also improved by Tai Chi training. CONCLUSIONS: Long-term Tai Chi training improves motor function, especially gait and balance, in PD. The underlying mechanisms may include enhanced brain network function, reduced inflammation, improved amino acid metabolism, energy metabolism and neurotransmitter metabolism, and decreased vulnerability to dopaminergic degeneration. Trial registration This study has been registered at Chinese Clinical Trial Registry (Registration number: ChiCTR2000036036; Registration date: August 22, 2020).
Assuntos
Doença de Parkinson , Tai Chi Chuan , Humanos , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/terapia , Equilíbrio Postural/fisiologia , Tai Chi Chuan/métodos , Estudos de Tempo e Movimento , Resultado do TratamentoRESUMO
Singlet fission (SF) is a mechanism of exciton multiplication in organic chromophores, which has potential to drive highly efficient optoelectronic devices. Creating effective device architectures that operate by SF critically depends on electronic interactions across multiple length scalesâfrom individual molecules to interchromophore interactions that facilitate multiexciton dephasing and exciton diffusion toward donor-acceptor interfaces. Therefore, it is imperative to understand the underpinnings of multiexciton transport and interfacial energy transfer in multichromophore systems. Interestingly, block copolymers (BCPs) can be designed to control multiscale interactions by tailoring the nature of the building blocks, yet SF dynamics are not well understood in these macromolecules. Here, we designed diblock copolymers comprising an inherent energy cleft at the interface between a block with pendent pentacene chromophores and an additional block with pendent tetracene chromophores. The singlet and triplet energy offset between the two blocks creates a driving force for exciton transport along the BCP chain in dilute solution. Using time-resolved optical spectroscopy, we have quantified the yields of key energy transfer steps, including both singlet and triplet energy transfer processes across the pentacene-tetracene interface. From this modular BCP architecture, we correlate the energy transfer time scales and relative yields with the length of each block. The ability to quantify these energy transfer processes provides valuable insights into exciton transport at critical length scales between bulk crystalline systems and small-molecule dimersâan area that has been underexplored.
RESUMO
We investigate triplet pair dynamics in pentacene dimers that have varying degrees of coplanarity (pentacene-pentacene twist angle). The fine-tuning of the twist angle was achieved by alternating connectivity at the 1-position or 2-positions of pentacene. This mix-and-match connectivity leads to tunable twist angles between the two covalently linked pentacenes. These twisted dimers allow us to investigate the subtle effects that the dihedral angle between the covalently linked pentacenes imparts on singlet fission and triplet pair recombination dynamics. We observe that as the dihedral angle between the two bonded pentacenes is increased, the rates of singlet fission decrease, while the accompanying decrease in triplet recombination rates is stark. Temperature-dependent transient optical studies combined with theoretical calculations show that the triplet pair recombination proceeds primarily through a direct multiexciton internal conversion process. Calculations further show that the significant decrease in recombination rates can be directly attributed to a corresponding decrease in the magnitude of the nonadiabatic coupling between the singlet multiexcitonic state and the ground state. These results highlight the importance of the twist angle in designing systems that exhibit rapid singlet fission, while maintaining long triplet pair lifetimes in pentacene dimers.
RESUMO
Microcrystal electron diffraction, grazing incidence wide-angle scattering, and UV-Vis spectroscopy were used to determine the unit cell structure and the relative composition of dimethylated diketopyrrolopyrrole (MeDPP) H- and J-polymorphs within thin films subjected to vapor solvent annealing (VSA) for different times. Electronic structure and excited state deactivation pathways of the different polymorphs were examined by transient absorption spectroscopy, conductive probe atomic force microscopy, and molecular modeling. We find VSA initially converts amorphous films into mixtures of H- and J-polymorphs and promotes further conversion from H to J with longer VSA times. Though both polymorphs exhibit efficient SF to form coupled triplets, free triplet yields are higher in J-polymorph films compared to mixed films because coupling in J-aggregates is lower, and, in turn, more favorable for triplet decoupling.
RESUMO
As a cold tumor, malignant glioma has strong immunosuppression and immune escape characteristics. The tumor microenvironment (TME) provides the "soil" for the survival of malignant tumors, and cancer-associated fibroblasts (CAFs) are the architects of matrix remodeling in TME. Therefore, CAFs have potent regulatory effects on the recruitment and functional differentiation of immune cells, whereby they synthesize and secrete numerous collagens, cytokines, chemokines, and other soluble factors whose interaction with tumor cells creates an immunosuppressive TME. This consequently facilitates the immune escape of tumor cells. Targeting CAFs would improve the TME and enhance the efficacy of immunotherapy. Thus, regulation of CAFs and CAFs-related genes holds promise as effective immunotherapies for gliomas. Here, by analyzing the Chinese Glioma Genome Atlas and the Cancer Genome Atlas database, the proportion of CAFs in the tumor was revealed to be associated with clinical and immune characteristics of gliomas. Moreover, a risk model based on the expression of CAFs-related six-gene for the assessment of glioma patients was constructed using the least absolute shrinkage and selection operator and the results showed that a high-risk group had a higher expression of the CAFs-related six-genes and lower overall survival rates compared with those in the low-risk group. Additionally, patients in the high-risk group exhibited older age, high tumor grade, isocitrate dehydrogenase wildtype, 1p/19q non-codeletion, O-6-methylguanine-DNA methyltransferase promoter unmethylation and poor prognosis. The high-risk subtype had a high proportion CAFs in the TME of glioma, and a high expression of immune checkpoint genes. Analysis of the Submap algorithm indicated that the high-risk patients could show potent response to anti-PD-1 therapy. The established risk prediction model based on the expression of six CAFs-related genes has application prospects as an independent prognostic indicator and a predictor of the response of patients to immunotherapy.