Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
IEEE Trans Pattern Anal Mach Intell ; 46(7): 4780-4795, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38265903

RESUMO

Since acquiring perfect supervision is usually difficult, real-world machine learning tasks often confront inaccurate, incomplete, or inexact supervision, collectively referred to as weak supervision. In this work, we present WSAUC, a unified framework for weakly supervised AUC optimization problems, which covers noisy label learning, positive-unlabeled learning, multi-instance learning, and semi-supervised learning scenarios. Within the WSAUC framework, we first frame the AUC optimization problems in various weakly supervised scenarios as a common formulation of minimizing the AUC risk on contaminated sets, and demonstrate that the empirical risk minimization problems are consistent with the true AUC. Then, we introduce a new type of partial AUC, specifically, the reversed partial AUC (rpAUC), which serves as a robust training objective for AUC maximization in the presence of contaminated labels. WSAUC offers a universal solution for AUC optimization in various weakly supervised scenarios by maximizing the empirical rpAUC. Theoretical and experimental results under multiple settings support the effectiveness of WSAUC on a range of weakly supervised AUC optimization tasks.

2.
Comput Math Methods Med ; 2022: 3830245, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35799650

RESUMO

Rapid and accurate evaluations of hematoma volume can guide the treatment of traumatic subdural hematoma. We aim to explore the consistency between the measurement results of traumatic subdural hematoma (TSDH) using a deep learn-based image segmentation algorithm. A retrospective study was conducted on 90 CT images of patients diagnosed with TSDH in our hospital from January 2019 to January 2022. All image data were measured by manual segmentation, convolutional neural networks (CNN) algorithm segmentation, and ABC/2 volume formula. With manual segmentation as the "golden standard," a consistency test was carried out with CNN algorithm segmentation and ABC/2 volume formula, respectively. The percentage error of CNN algorithm segmentation is less than ABC/2 volume formula. There is no significant difference between CNN algorithm segmentation and manual segmentation (P > 0.05). The area under curve of the ABC/2 volume formula, manual segmentation, and CNN algorithm segmentation is 0.811 (95% CI: 0.717~0.905), 0.840 (95% CI: 0.753~0.928), and 0.832 (95% CI: 0.742~0.922), respectively. From our results, the algorithm based on CNN has a good efficiency in segmentation and accurate calculation of TSDH hematoma volume.


Assuntos
Aprendizado Profundo , Hematoma/diagnóstico por imagem , Hematoma Subdural , Humanos , Processamento de Imagem Assistida por Computador/métodos , Redes Neurais de Computação , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA