Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(8)2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37109840

RESUMO

The effects of solid solution treatment duration on the corrosion behavior and microstructure behavior of the cast Mg-8.5Li-6.5Zn-1.2Y (wt.%) alloy were investigated. This study revealed that with the treatment time for solid solutions increasing from 2 h to 6 h, the amount of α-Mg phase gradually decreases, and the alloy presents a needle-like shape after solid solution treatment for 6 h. Meanwhile, when the solid solution treatment time increases, the I-phase content drops. Exceptionally, under 4 h of solid solution treatment, the I-phase content has increased, and it is dispersed uniformly over the matrix. What we found in our hydrogen evolution experiments is that the hydrogen evolution rate of the as-cast Mg-8.5Li-6.5Zn-1.2Y alloy following solid solution processing for 4 h is 14.31 mL·cm-2·h-1, which is the highest rate. In the electrochemical measurement, the corrosion current density (icorr) value of as-cast Mg-8.5Li-6.5Zn-1.2Y alloy following solid solution processing for 4 h is 1.98 × 10-5, which is the lowest density. These results indicate that solid solution treatment can significantly improve the corrosion resistance of the Mg-8.5Li-6.5Zn-1.2Y alloy. The I-phase and the α-Mg phase are the primary elements influencing the corrosion resistance of the Mg-8.5Li-6.5Zn-1.2Y alloy. The existence of the I-phase and the border dividing the α-Mg phase and ß-Li phase easily form galvanic corrosion. Although the I-phase and the boundary between the α-Mg phase and ß-Li phase will be corrosion breeding sites, they are more effective in inhibiting corrosion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA