Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 258
Filtrar
1.
J Hazard Mater ; 475: 134882, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38870853

RESUMO

Poly(butylene adipate-co-terephthalate) (PBAT) is a biodegradable plastic that is difficult to degrade under both mesophilic and thermophilic anaerobic conditions. In this study, the impact of the thermo-alkaline pretreatment (48 h, 70 °C, 1 % w/v NaOH) on the anaerobic degradation (AD) of PBAT, poly(lactic acid) (PLA) and PBAT/PLA blended plastics was investigated. Under mesophilic conditions, pretreatment only improved the methane yield of PBAT/PLA/starch plastic (100 days, 51 and 34 NmL/g VSadd for the treated and original plastics, respectively). Under thermophilic conditions, the pretreatment increased the methanogenic rate of PLA, PBAT and PBAT/PLA/starch plastic at the beginning stage (22 days, 35 and 79 NmL/g VSadd for original and treated PBAT, respectively), but did not change the methane yield at the end of the incubation (100 days, 91 NmL/g VSadd for original and treated PBAT). The reduction in the molecular weight and the formation of pore structures on the plastic surface accelerated the utilization of plastics by microorganisms. Furthermore, the pretreated plastics tend to form microplastics (MPs) with size predominantly below 500 µm (>90 %). The numbers of MPs dynamically changed with the degradation time. Several genera of bacteria showed specific degradation of biodegradable plastics under thermophilic conditions, including Desulfitibacter, Coprothermobacter, Tepidimicrobium, c_ D8A-2 and Thermacetogenium. The results suggest that more attention should be paid to the problem of MPs arising from the thermo-alkaline pretreatment.

2.
Environ Sci Technol ; 58(15): 6659-6669, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38557040

RESUMO

Revealing the role of functional redundancy is of great importance considering its key role in maintaining the stability of microbial ecosystems in response to various disturbances. However, experimental evidence on this point is still lacking due to the difficulty in "manipulating" and depicting the degree of redundancy. In this study, manipulative experiments of functional redundancy were conducted by adopting the mixed inoculation strategy to evaluate its role in engineered anaerobic digestion systems under ammonium inhibition conditions. The results indicated that the functional redundancy gradient was successfully constructed and confirmed by evidence from pathway levels. All mixed inoculation groups exhibited higher methane production regardless of the ammonium level, indicating that functional redundancy is crucial in maintaining the system's efficiency. Further analysis of the metagenome-assembled genomes within different functional guilds revealed that the extent of redundancy decreased along the direction of the anaerobic digestion flow, and the role of functional redundancy appeared to be related to the stress level. The study also found that microbial diversity of key functional populations might play a more important role than their abundance on the system's performance under stress. The findings provide direct evidence and highlight the critical role of functional redundancy in enhancing the efficiency and stability of anaerobic digestion.


Assuntos
Compostos de Amônio , Microbiota , Anaerobiose , Reatores Biológicos , Metagenoma , Metano
3.
Anal Chem ; 96(15): 6045-6054, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38569073

RESUMO

Plastic pollution pervades natural environments and wildlife. Consequently, high-throughput detection methods for plastic debris are urgently needed. A novel method was developed to detect plastic debris larger than 0.5 mm, which integrated an extraction method with low organic loss and plastic damage alongside a classification method for fused images. This extraction method broadened the size range of the remaining plastic debris, while the fusion solved the low spatial resolution of hyperspectral images and the absence of spectral information in red-green-blue (RGB) images. This method was validated for plastic debris in digestate, compost, and sludge, with extraction demonstrating 100% recovery rates for all samples. After fusion, the spatial resolution of hyperspectral images was improved about five times. Classification recall for the fused hyperspectral images achieved 97 ± 8%, surpassing 83 ± 29% of the raw images. Application of this method to solid digestate detected 1030 ± 212 items/kg of plastic debris, comparable with the conventional Fourier transform infrared spectroscopic result of 1100 ± 436 items/kg. This developed method can investigate plastic debris in complex matrices, simultaneously addressing a wide range of sizes and types. This capability helps acquire reliable data to predict secondary microplastic generation and conduct a risk assessment.

4.
Water Res ; 254: 121403, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38447377

RESUMO

Biological treatment is one of the most promising efficient, low-carbon and affordable approaches for the treatment of recalcitrantly degradable wastewater, such as landfill leachate. However, even the macroscopic molecular level analysis of dissolved organic matter (DOM) is limiting to the enhancement of biological treatment efficacy, and there is an urgent need for deeper exploration of DOM to gain insights into the key constraining substances. In the present study targeting at piercing leachate organic at molecular level, nitrogen-containing dissolved organic matter (DOMN) was identified to be the bottleneck that govern the biotreatment potential. The conclusion was made based on two series of experiments that compared the same anoxic-aerobic membrane bioreactor process (A process) operated stably at different regions, and compared with C process that coupling A process with a circulation aeration membrane bioreactor to improve aeration efficiency. The results confirmed that the relative abundance of DOMN was absolutely dominant among the three categories of DOM in all biologically treated samples, contributing to 60.36 %-65.81 % in removed-DOM, 60.33 %-70.95 % in refractory-DOM and 63.14 %-71.36 % in derived-DOM. Specifically, the high latitude A process had much lower DOMN removal rate than the low latitude A process (p < 0.05) and much higher refractory and derivatization rates than the low latitude A process (p < 0.05). DOM had similar results. No statistically significant differences were observed in the proportion of the three categories of DOM (DOMN), the elements composition, and the subcategory composition of the C process compared to the A process, in which the DOM (DOMN) derivation rate of NEC1-C (31.92 % and 33.41 %) was much higher than that of NEC1-A (20.88 % and 22.19 %). However, the AIwa and AImodwa of the derived-DOM (DOMN) were significantly higher in the C process than in the A process, which implied that excessive aeration did not enhance the biological treatment potential of the A process, but instead led to the proliferation of microorganisms and the secretion of extracellular polymer substances, which resulted in the derivation of more complex compounds. The results of the correlation analysis indicated that there were some regional differences in the molecular information of DOMN driven by climate temperature. In addition, it was worth mentioning that the nominal oxidation state of carbon (NOSCwa) of derived-DOMN in different regions of A process was noticeably higher than the corresponding DOM (p < 0.0001), implying that the derived-DOMN were still highly biodegradable, in other words, there was still great room for improving the biological treatment potential of landfill leachate. The present study provided a deeper insight and analysis of landfill leachate at the molecular level (DOMN) through multiple practical engineering cases, with a view to providing a theoretical basis for efficient optimization of biological treatment.


Assuntos
Matéria Orgânica Dissolvida , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Águas Residuárias , Carbono , Reatores Biológicos
5.
Environ Res ; 246: 118139, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38191048

RESUMO

With the implementation of municipal solid waste source segregation, the enormous sorted biogenic waste has become an issue that needs to be seriously considered. Anaerobic digestion, which can produce biogas and extract floating oil for biodiesel production, is the most prevalent treatment in China for waste management and greenhouse gas (GHG) emissions reduction, in accordance with Sustainable Development Goal 13 of the United Nations. Herein, a large-scale biogas plant with a capacity of 1000 tonnes of biogenic waste (400 tonnes of restaurant biogenic waste and 600 tonnes of kitchen biogenic waste) per day was investigated onsite using material flow analysis, and the parts of the biogas plant were thoroughly analyzed, especially the pretreatment system for biogenic waste impurity removal and homogenization. The results indicated that the loss of the total biodegradable organic matter was 41.8% (w/w) of daily feedstock and the loss of biogas potential was 18.8% (v/v) of daily feedstock. Life cycle assessment revealed that the 100-year GHG emissions were -61.2 kgCO2-eq per tonne biogenic waste. According to the sensitivity analysis, pretreatment efficiency, including biodegradable organic matter recovery and floating oil extraction, considerably affected carbon reduction potential. However, when the pretreatment efficiency deteriorated, GHG benefits of waste source segregation and the subsequent biogenic waste anaerobic digestion would be reduced.


Assuntos
Gases de Efeito Estufa , Eliminação de Resíduos , Gerenciamento de Resíduos , Biocombustíveis , Efeito Estufa , Anaerobiose , Carbono , Gerenciamento de Resíduos/métodos , Resíduos Sólidos , Eliminação de Resíduos/métodos
6.
Bioresour Technol ; 395: 130333, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38244938

RESUMO

Two novel biogas upgrading strategies that recover high-value chemicals or CO2 liquid fertilizer from biogas besides biomethane were evaluated from the view of global warming potential (GWP) through life cycle assessment in comparison with conventional approaches. Results show that the scenarios producing biomethane with nano calcium carbonate or CO2 liquid fertilizer from biogas present significantly lower GWP (-3.4 kgCO2-eq/Nm3-biogas and -4.4 kgCO2-eq/Nm3-biogas, respectively), compared to combined heat and power scenario (-2.4 kgCO2-eq/Nm3-biogas) and biogas upgrading by high pressure water scrubbing scenario (-1.3 kgCO2-eq/Nm3-biogas). The carbon sequestration and utilization from CO2-rich water significantly enhanced carbon reduction in overall biogas management. Furthermore, considering cleaner electricity in the future, strategies focusing on managing biogas for materials will align more with climate change goals than energy-focused strategies. This study provides insight for decision-makers in developing roadmaps for carbon reduction pathways in biogas-relating sectors.


Assuntos
Biocombustíveis , Dióxido de Carbono , Dióxido de Carbono/metabolismo , Fertilizantes , Metano/metabolismo , Água
7.
Waste Manag ; 174: 218-228, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38064993

RESUMO

Poly (lactic acid) (PLA) and Poly(butylene adipate-co-terephthalate) (PBAT) are two of biodegradable plastics with the highest production capacities in 2021. Bioplastic waste management can be easily integrated with organic waste management, especially when bioplastics are used as food packaging material, since they are potentially biodegradable. The aim of this study was to assess the biodegradability of biodegradable polymer-coated paper (BPCP) and bioplastic bags made from PBAT/PLA blend during mesophilic and thermophilic anaerobic digestion (AD) and to reveal the changes in the physicochemical properties of the bioplastics. BPCP obtained 155 NmL-CH4/g VS and 307.3 NmL-CH4/g VS under mesophilic and thermophilic conditions, respectively, but left bioplastic film residues. The bioplastic bags did not exhibit significant biodegradation during the AD processes. 1H NMR results indicated that the ratio of PLA to PBAT decreased significantly after AD of the BPCP film and that PLA monomers were formed from the bioplastic bags, leading to a decrease in the hydrophobicity on the surfaces of the materials. Methanoculleus was found to be enriched on the bioplastic surface after mesophilic AD. From the perspective of coupling bioplastic waste management with the food waste management, the incorporation of BPCP into the AD reactor not only enhances system stability and methane production to a greater extent than biodegradable plastic bags but also raises concerns regarding the residual biofilm when utilizing the digestate for direct land applications.


Assuntos
Alimentos , Eliminação de Resíduos , Anaerobiose , Biopolímeros , Polímeros , Poliésteres
8.
Bioresour Technol ; 393: 130111, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38013033

RESUMO

Diverse factors influence biogas production, such as material properties, testing conditions, reporting methods and other additional processing techniques. This complexity makes it difficult to compare biochemical methane potential (BMP) data, replicate experiments' results, and improve efficiencies associated with engineering applications. This study has taken preliminary attempts to build a sliced and structured BMP database, but optimizing the organization of data information and collecting more comprehensive and manually checked data information to cope with the increasing richness of the BMP test content. The first-generation BMP database contains 746 sets of data, covering 7 major substrate categories, including 187 key indicators and 26 supplementary indicators. It offers functions including data screening, comparing, uploading, and visual display of BMP data. The application of the database in comparing different types of substrates and additives is shown. In the future, the BMP database will be regularly upgraded to become more comprehensive.


Assuntos
Biocombustíveis , Metano , Anaerobiose
9.
J Environ Sci (China) ; 139: 483-495, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38105071

RESUMO

The significant increase in the demand for biomass waste treatment after garbage classification has led to housefly larvae treatment becoming an attractive treatment option. It can provide a source of protein while treating biomass waste, which means that nutrients can be returned to the natural food chain. However, the performance of this technology in terms of its environmental impacts is still unclear, particularly with regards to global warming potential (GWP).This study used a life cycle assessment (LCA) approach to assess a housefly larvae treatment plant with a treatment capacity of 50 tons of biomass waste per day. The LCA results showed that the 95% confidence intervals for the GWP in summer and winter were determined to be 24.46-32.81 kg CO2 equivalent (CO2-eq)/ton biomass waste and 5.37-10.08 kg CO2-eq/ton biomass waste, respectively. The greater GWP value in summer is due to the longer ventilation time and higher ventilation intensity in summer, which consumes more power. The main GWP contributions are from (1) electricity needs (accounting for 78.6% of emissions in summer and 70.2% in winter) and (2) product substitution by mature housefly larvae and compost (both summer and winter accounting for 96.8% of carbon reduction).


Assuntos
Compostagem , Moscas Domésticas , Animais , Aquecimento Global , Larva , Dióxido de Carbono
10.
Environ Sci Technol ; 57(42): 16033-16042, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37822265

RESUMO

Halogenated organic compounds in wastewater are persistent and bioaccumulative contaminants of great concern, but few are known at the molecular level. Herein, we focus on nontarget screening of halogenated dissolved organic matter (DOM) in highly concentrated organic matrices of waste leachates and their concentrates. Solid-phase extraction (SPE) was optimized before capturing halogenated signatures via HaloSeeker 2.0 software on mining full-scan high-resolution mass spectrometry (HRMS) fingerprints. This study identified 438 Cl-/Br-containing DOM formulas in 21 leachates and membrane concentrates. Among them, 334 formulas were achieved via SPE with mixed-sorbent cartridges (mixed-SPE), surpassing the 164 formulas achieved through Bond Elut PPL cartridges (PPL-SPE). Herein, only four samples identified via PPL-SPE exhibited a resolution of >50% for extracted Cl-/Br-containing DOM by either SPE. The halogenated DOM constituted 6.87% of the total DOM mass features. Nevertheless, more abundant adsorbable organic halogens deciphered waste leachates and highly concentrated waste streams as reservoirs for halogenated contaminants. Remarkably, 75.7-98.1% of Cl-/Br-containing DOM in primary membrane concentrates remained stable through the secondary membrane treatment, indicating the persistence of these unknown contaminants even post-treatment.


Assuntos
Matéria Orgânica Dissolvida , Compostos Orgânicos , Espectrometria de Massas , Compostos Orgânicos/análise , Águas Residuárias , Extração em Fase Sólida/métodos
11.
Water Res ; 244: 120536, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37659183

RESUMO

Fenton is one of the most promising processes for the removal of dissolved organic matter (DOM). It has always been highly suspected that derived-DOM would be generated during Fenton reaction, but there is lack of direct evidence at the molecular level. The present study explored the molecular properties of the derived-DOM of five common Fenton technologies for degradation of nine landfill organics including leachates and concentrates based on UPLC Orbitrap MS/MS analysis. The comparative results confirmed that DOM derivation was essential for Fenton technologies, with the DOM derivation rate as high as 17.3%-70.3%. The derived-DOM are dominated by trace organic contaminants (CHON-DOM), and typical new contaminants (PPCPs, flavors, etc.). Heterogeneous Fenton had significantly lesser derived-DOM (35.1% ± 16.9%) than other Fenton technologies. Among all landfill organics, medium leachate was most likely to derive DOM (51.4% ± 13.9%), while unexpectedly old leachate had the lowest derivation rate (32.0% ± 5.3%). In the overall membrane treatment process, the secondary membrane concentrate is more susceptible to DOM derivation (43.4% ± 5.5%-49.6% ± 3.8%) than the primary membrane concentrate (40.7% ± 14.1%), and the elements and subcategories composition and molecular property indexes of the derived-DOM become more complex. On the contrary, the DOM derivatization rate of the biological treatment effluent after Fenton treatment was much lower than that of the various concentrates after Fenton treatment and the molecular property are simpler. Therefore, Fenton may replace the membrane process directly as a deep treatment process after biological treatment of landfill leachate. These information would help the selection and application of Fenton technologies.


Assuntos
Matéria Orgânica Dissolvida , Poluentes Químicos da Água , Espectrometria de Massas em Tandem , Tecnologia
12.
Microbiome ; 11(1): 170, 2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37537690

RESUMO

BACKGROUND: The interaction among microorganisms in the anaerobic digestion of food waste (ADFW) reactors lead to the degradation of organics and the recycling of energy. Viruses are an important component of the microorganisms involved in ADFW, but are rarely investigated. Furthermore, little is known about how viruses affect methanogenesis. RESULTS: Thousands of viral sequences were recovered from five full-scale ADFW reactors. Gene-sharing networks indicated that the ADFW samples contained substantial numbers of unexplored anaerobic-specific viruses. Moreover, the viral communities in five full-scale reactors exhibited both commonalities and heterogeneities. The lab-scale dynamic analysis of typical ADFW scenarios suggested that the viruses had similar kinetic characteristics to their prokaryotic hosts. By associating with putative hosts, a majority of the bacteria and archaea phyla were found to be infected by viruses. Viruses may influence prokaryotic ecological niches, and thus methanogenesis, by infecting key functional microorganisms, such as sulfate-reducing bacteria (SRB), syntrophic acetate-oxidizing bacteria (SAOB), and methanogens. Metabolic predictions for the viruses suggested that they may collaborate with hosts at key steps of sulfur and long-chain fatty acid (LCFA) metabolism and could be involved in typical methanogenesis pathways to participate in methane production. CONCLUSIONS: Our results expanded the diversity of viruses in ADFW systems and suggested two ways that viral manipulated ADFW biochemical processes. Video Abstract.


Assuntos
Alimentos , Eliminação de Resíduos , Anaerobiose , Bactérias/genética , Bactérias/metabolismo , Archaea/genética , Archaea/metabolismo , Metano/metabolismo , Reatores Biológicos/microbiologia
13.
Sci Total Environ ; 903: 166143, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37572914

RESUMO

Food waste management is an important global issue, and anaerobic digestion (AD) is a sustainable technology for treating food waste and developing a circular economy. Odor and health problems in AD plants have drawn increasing public attention. Therefore, this study investigated the odor characteristics and health risks in different workshops of food waste AD plants. At each site, the treatment capacities for kitchen and restaurant waste were 200 and 200-250 tons per day, respectively. Among the detected odorants, ethanol was the dominant component in terms of concentrations, while methanethiol, propanethiol, H2S, and acetaldehyde were the major odor contributors in different workshops. The odor contribution of propanethiol had been previously overlooked in several workshops. The unloading, pretreatment, and bio-hydrolysis workshops were identified as major areas requiring odor control. Besides odor, carcinogenic and non-carcinogenic risks commonly existed in food waste AD plants. The carcinogenic risk of acetaldehyde had been underestimated previously, and it was identified as the dominant carcinogen. Furthermore, benzene was a potential carcinogen. Non-carcinogenic risks were mainly caused by acetaldehyde, H2S, and ethyl acetate. The health risks were not always consistent with odor nuisance. Based on the odor and health risk assessments, several air pollution control strategies for food waste AD plants were proposed, including food waste source control, in-situ pollution control, and ex-situ pollution control.

14.
Waste Manag Res ; : 734242X231187578, 2023 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-37455515

RESUMO

The importance and urgency of domestic solid waste (DSW) source segregation in universities is self-evident. Although many universities have carried out waste management, however, a comprehensive summary for successful implementation work of DSW segregation is lacking. This study summarizes the mechanism of DSW segregation in Chinese university based on questionnaire survey, on-site inquiry and sampling analysis in a comprehensive university in Shanghai. Questionnaire survey show that it is critical for encouraging students to participate in waste segregation to build convenient segregation facilities and humanized segregation reward and punishment method. The strengthened publicity and education due to the advantages in environmental discipline, easy-operating waste dumping site/facility as well as personalized solutions for different functional areas (teaching building) were considerably important strategies for implementing efficient waste segregation. The recyclables that were collected by intelligent recycling device and mobile recycling enterprise were dominated by paper, and the amounts increased dramatically during the graduation season. Therefore, the university correspondingly increased the collection frequencies of waste and the number of segregation guiders in the period to decrease the potential risk of fire safety. The study could provide a valuable reference for efficient implementation of waste segregation on university/college in China.

15.
Biotechnol Adv ; 67: 108204, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37356597

RESUMO

The wide application of anaerobic digestion (AD) technology is limited by process fluctuations. Thus, process monitoring based on screening state parameters as early warning indicators (EWI) is a top priority for AD facilities. However, predicting anaerobic digester stability based on such indicators is difficult, and their threshold values are uncertain, case-specific, and sometimes produce conflicting results. Thus, new EWI should be proposed to integrate microbial and metabolic information. These microbial volatile organic compounds (mVOCs) including alkanes, alkenes, alkynes, aromatic compounds are produced by microorganisms (bacteria, archaea and fungi), which might serve as a promising diagnostic tool for environmental monitoring. Moreover, mVOCs diffuse in both gas and liquid phases and are considered the language of intra kingdom microbial interactions. Herein, we highlight the potential of mVOCs as EWI for AD process instability, including discussions regarding characteristics and sources of mVOCs as well as sampling and determination methods. Furthermore, existing challenges must be addressed, before mVOCs profiling can be used as an early warning system for diagnosing AD process instability, such as mVOCs sampling, analysis and identification. Finally, we discuss the potential biotechnology applications of mVOCs and approaches to overcome the challenges regarding their application.


Assuntos
Compostos Orgânicos Voláteis , Anaerobiose , Fungos , Bactérias , Archaea
16.
J Environ Manage ; 336: 117651, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36878058

RESUMO

Odor pollution has become a global environmental issue of increasing concern in recent years. Odor measurements are the basis of assessing and solving odor problems. Olfactory and chemical analysis can be used for odor and odorant measurements. Olfactory analysis reflects the subjective perception of human, and chemical analysis reveals the chemical composition of odors. As an alternative to olfactory analysis, odor prediction methods have been developed based on chemical and olfactory analysis results. The combination of olfactory and chemical analysis is the best way to control odor pollution, evaluate the performances of the technologies, and predict odor. However, there are still some limitations and obstacles for each method, their combination, and the prediction. Here, we present an overview of odor measurement and prediction. Different olfactory analysis methods (namely, the dynamic olfactometry method and the triangle odor bag method) are compared in detail, the latest revisions of the standard olfactometry methods are summarized, and the uncertainties of olfactory measurement results (i.e., the odor thresholds) are analyzed. The researches, applications, and limitations of chemical analysis and odor prediction are introduced and discussed. Finally, the development and application of odor databases and algorithms for optimizing odor measurement and prediction methods are prospected, and a preliminary framework for an odor database is proposed. This review is expected to provide insights into odor measurement and prediction.


Assuntos
Odorantes , Olfato , Humanos , Odorantes/análise , Olfatometria , Poluição Ambiental , Algoritmos
17.
Chemosphere ; 325: 138327, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36889471

RESUMO

Flares are commonly used in municipal solid waste landfills, and the pollution from flare exhaust is usually underestimated. This study aimed to reveal the odorants, hazardous pollutants, and greenhouse gas emission characteristics of the flare exhaust. Odorants, hazardous pollutants, and greenhouse gases emitted from air-assisted flares and a diffusion flare were analyzed, the priority monitoring pollutants were identified, and the combustion and odorant removal efficiencies of the flares were estimated. The concentrations of most odorants and the sum of odor activity values decreased significantly after combustion, but the odor concentration could still exceed 2,000. The odorants in the flare exhaust were dominated by oxygenated volatile organic compounds (OVOCs), while the major odor contributors were OVOCs and sulfur compounds. Hazardous pollutants, including carcinogens, acute toxic pollutants, endocrine disrupting chemicals, and ozone precursors with the total ozone formation potential up to 75 ppmv, as well as greenhouse gases (methane and nitrous oxide with maximum concentrations of 4,000 and 1.9 ppmv, respectively) were emitted from the flares. Additionally, secondary pollutants, such as acetaldehyde and benzene, were formed during combustion. The combustion performance of the flares varied with landfill gas composition and flare design. The combustion and pollutant removal efficiencies could be lower than 90%, especially for the diffusion flare. Acetaldehyde, benzene, toluene, p-cymene, limonene, hydrogen sulfide, and methane could be priority monitoring pollutants for flare emissions in landfills. Flares are useful for odor and greenhouse gas control in landfills, but they are also potential sources of odor, hazardous pollutants, and greenhouse gases.


Assuntos
Poluentes Atmosféricos , Poluentes Ambientais , Gases de Efeito Estufa , Ozônio , Eliminação de Resíduos , Resíduos Sólidos , Poluentes Atmosféricos/análise , Benzeno/análise , Emissões de Veículos , Acetaldeído , Instalações de Eliminação de Resíduos , Metano/análise , Odorantes/análise
18.
J Environ Sci (China) ; 128: 150-160, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36801031

RESUMO

The development of methods for the efficient treatment and application of food waste digestate is an important research goal. Vermicomposting via housefly larvae is an efficient way to reduce food waste and achieve its valorization, however, studies on the application and performance of digestate in vermicomposting are rarely. The present study aimed to investigate the feasibility of the co-treatment of food waste and digestate as an additive via larvae. Restaurant food waste (RFW) and household food waste (HFW) were selected to assess the effects of waste type on vermicomposting performance and larval quality. Waste reduction rates of 50.9%-57.8% were observed in the vermicomposting of food waste mixed with digestate at a ratio of 25%, which were slightly lower than those for treatments without the addition of digestate (62.8%-65.9%). The addition of digestate increased the germination index, with a maximum value of 82% in the RFW treatments with 25% digestate, and decreased the respiration activity, with a minimum value of 30 mg-O2/g-TS. The larval productivity of 13.9% in the RFW treatment system with a digestate rate of 25% was lower that without digestate (19.5%). Materials balance shows that larval biomass and metabolic equivalent had decreasing trends as the amount of digestate increased and HFW vermicomposting exhibited lower bioconversion efficiency than that of RFW treatment system regardless of the addition of digestate. These results suggest that mixing digestate at a low ratio (25%) during vermicomposting of food waste especially RFW could lead to considerable larval biomass and generate relatively stable residues.


Assuntos
Moscas Domésticas , Eliminação de Resíduos , Animais , Alimentos , Larva , Eliminação de Resíduos/métodos , Estudos de Viabilidade
19.
Anal Chem ; 95(9): 4412-4420, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36820858

RESUMO

Insights into carbon sources (biogenic and fossil carbon) and contents in solid waste are vital for estimating the carbon emissions from incineration plants. However, the traditional methods are time-, labor-, and cost-intensive. Herein, high-quality data sets were established after analyzing the carbon contents and infrared spectra of substantial samples using elemental analysis and attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), respectively. Then, five classification and eight regression machine learning (ML) models were evaluated to recognize the proportion of biogenic and fossil carbon in solid waste. Using the optimized data preprocessing approach, the random forest (RF) classifier with hyperparameter tuning ranked first in classifying the carbon group with a test accuracy of 0.969, and the carbon contents were successfully predicted by the RF regressor with R2 = 0.926 considering performance-interpretability-computation time competition. The above proposed algorithms were further validated with real environmental samples, which exhibited robust performance with an accuracy of 0.898 for carbon group classification and an R2 value of 0.851 for carbon content prediction. The reliable results indicate that ATR-FTIR coupled with ML algorithms is feasible for rapidly identifying both carbon groups and content, facilitating the calculation and assessment of carbon emissions from solid waste incineration.

20.
Waste Manag ; 158: 57-65, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36640669

RESUMO

Rural solid waste management is essential for fulfilling sustainable development goals, especially in developing countries. However, quantitative study on this aspect has been little and far behind the urban areas. In this study, the environmental impacts of four typical rural solid waste management systems were quantified using life cycle assessment based on data from field investigations of five towns across four seasons. Sensitivity analysis was used to determine the most influential parameters. The results showed that landfilling mixed waste contributed the highest environmental impacts. By substituting landfilling with incineration, the environmental impacts (i.e., global warming potential, terrestrial acidification potential, fossil resource scarcity, freshwater ecotoxicity potential) dropped about 110%-900%. When shifting collection schemes to source separation, the environmental impacts also decreased by approximately 50%-200%. However, the environmental impacts of applying source separation to the existing management systems with mixed collection and disposal facilities of landfill or waste-to-energy (WTE) incineration are unclear and depend on the performance of decentralized composting and anaerobic digestion facilities, which need further investigations. Compared with urban cases, the landfill in rural areas emits higher greenhouse gas (GHG), and WTE incineration plants in rural areas have similar GHG emissions to WTE in urban areas. Besides, energy recovery was the most influential process in WTE systems and a 1% improvement on that would bring over 10% progress on global warming potential impact category. These findings can be useful for improving and developing rural domestic waste treatment in China and other developing countries.


Assuntos
Gases de Efeito Estufa , Eliminação de Resíduos , Gerenciamento de Resíduos , Animais , Eliminação de Resíduos/métodos , Gerenciamento de Resíduos/métodos , Resíduos Sólidos/análise , Incineração , Instalações de Eliminação de Resíduos , Estágios do Ciclo de Vida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA