Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Neural Regen Res ; 20(1): 277-290, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38767492

RESUMO

JOURNAL/nrgr/04.03/01300535-202501000-00035/figure1/v/2024-05-14T021156Z/r/image-tiff Our previous study found that rat bone marrow-derived neural crest cells (acting as Schwann cell progenitors) have the potential to promote long-distance nerve repair. Cell-based therapy can enhance peripheral nerve repair and regeneration through paracrine bioactive factors and intercellular communication. Nevertheless, the complex contributions of various types of soluble cytokines and extracellular vesicle cargos to the secretome remain unclear. To investigate the role of the secretome and extracellular vesicles in repairing damaged peripheral nerves, we collected conditioned culture medium from hypoxia-pretreated neural crest cells, and found that it significantly promoted the repair of sensory neurons damaged by oxygen-glucose deprivation. The mRNA expression of trophic factors was highly expressed in hypoxia-pretreated neural crest cells. We performed RNA sequencing and bioinformatics analysis and found that miR-21-5p was enriched in hypoxia-pretreated extracellular vesicles of neural crest cells. Subsequently, to further clarify the role of hypoxia-pretreated neural crest cell extracellular vesicles rich in miR-21-5p in axonal growth and regeneration of sensory neurons, we used a microfluidic axonal dissociation model of sensory neurons in vitro, and found that hypoxia-pretreated neural crest cell extracellular vesicles promoted axonal growth and regeneration of sensory neurons, which was greatly dependent on loaded miR-21-5p. Finally, we constructed a miR-21-5p-loaded neural conduit to repair the sciatic nerve defect in rats and found that the motor and sensory functions of injured rat hind limb, as well as muscle tissue morphology of the hind limbs, were obviously restored. These findings suggest that hypoxia-pretreated neural crest extracellular vesicles are natural nanoparticles rich in miRNA-21-5p. miRNA-21-5p is one of the main contributors to promoting nerve regeneration by the neural crest cell secretome. This helps to explain the mechanism of action of the secretome and extracellular vesicles of neural crest cells in repairing damaged peripheral nerves, and also promotes the application of miR-21-5p in tissue engineering regeneration medicine.

2.
Regen Ther ; 27: 365-380, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38694448

RESUMO

Brachial plexus injury (BPI) with motor neurons (MNs) damage still remain poor recovery in preclinical research and clinical therapy, while cell-based therapy approaches emerged as novel strategies. Previous work of rat skin precursor-derived Schwann cells (SKP-SCs) provided substantial foundation for repairing peripheral nerve injury (PNI). Given that, our present work focused on exploring the repair efficacy and possible mechanisms of SKP-SCs implantation on rat BPI combined with neurorrhaphy post-neurotomy. Results indicated the significant locomotive and sensory function recovery, with improved morphological remodeling of regenerated nerves and angiogenesis, as well as amelioration of target muscles atrophy and motor endplate degeneration. Besides, MNs could restore from oxygen-glucose-deprivation (OGD) injury upon SKP-SCs-sourced secretome treatment, implying the underlying paracrine mechanisms. Moreover, rat cytokine array assay detected 67 cytokines from SKP-SC-secretome, and bioinformatic analyses of screened 32 cytokines presented multiple functional clusters covering diverse cell types, including inflammatory cells, Schwann cells, vascular endothelial cells (VECs), neurons, and SKP-SCs themselves, relating distinct biological processes to nerve regeneration. Especially, a panel of hypoxia-responsive cytokines (HRCK), can participate into multicellular biological process regulation for permissive regeneration milieu, which underscored the benefits of SKP-SCs and sourced secretome, facilitating the chorus of nerve regenerative microenvironment. Furthermore, platelet-derived growth factor-AA (PDGF-AA) and vascular endothelial growth factor-A (VEGF-A) were outstanding cytokines involved with nerve regenerative microenvironment regulating, with significantly elevated mRNA expression level in hypoxia-responsive SKP-SCs. Altogether, through recapitulating the implanted SKP-SCs and derived secretome as niche sensor and paracrine transmitters respectively, HRCK would be further excavated as molecular underpinning of the neural recuperative mechanizations for efficient cell therapy; meanwhile, the analysis paradigm in this study validated and anticipated the actions and mechanisms of SKP-SCs on traumatic BPI repair, and was beneficial to identify promising bioactive molecule cocktail and signaling targets for cell-free therapy strategy on neural repair and regeneration.

3.
Neural Regen Res ; 17(8): 1833-1840, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35017446

RESUMO

Peripheral nerve fibroblasts play a critical role in nerve development and regeneration. Our previous study found that peripheral nerve fibroblasts have different sensory and motor phenotypes. Fibroblasts of different phenotypes can guide the migration of Schwann cells to the same sensory or motor phenotype. In this study, we analyzed the different effects of peripheral nerve-derived fibroblasts and cardiac fibroblasts on motoneurons. Compared with cardiac fibroblasts, peripheral nerve fibroblasts greatly promoted motoneuron neurite outgrowth. Transcriptome analysis results identified 491 genes that were differentially expressed in peripheral nerve fibroblasts and cardiac fibroblasts. Among these, 130 were significantly upregulated in peripheral nerve fibroblasts compared with cardiac fibroblasts. These genes may be involved in axon guidance and neuron projection. Three days after sciatic nerve transection in rats, peripheral nerve fibroblasts accumulated in the proximal and distal nerve stumps, and most expressed brain-derived neurotrophic factor. In vitro, brain-derived neurotrophic factor secreted from peripheral nerve fibroblasts increased the expression of ß-actin and F-actin through the extracellular regulated protein kinase and serine/threonine kinase pathways, and enhanced motoneuron neurite outgrowth. These findings suggest that peripheral nerve fibroblasts and cardiac fibroblasts exhibit different patterns of gene expression. Peripheral nerve fibroblasts can promote motoneuron neurite outgrowth.

4.
Neurosci Res ; 145: 22-29, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30125610

RESUMO

Electrical stimulation could enhance nerve regeneration and functional recovery. The objective of this study was to evaluate the regenerative effects of implanted electrodes with different contacts in resected sciatic nerve. Sciatic nerve resection and microsurgical repair models were established and randomly divided into four groups (point contact, 1/4 circle contact; whole-circle contact; no electrodes as control). Electrical stimulation was performed and electrophysiological, morphological and histological exams (of the sciatic nerve and muscle) were conducted at 4 and 10 weeks post-implantation. Point and 1/4 circle contact groups showed significantly higher scores in the sciatic functional index (SFI), increased amplitude of compound muscle action potential (AMP) and motor nerve conduction velocity (MNCV) compared to the control group at both 4 and 10 weeks post-implantation. Point and 1/4 circle contact morphologically promoted sciatic nerve regeneration and reduced muscular atrophy with less mechanical injury to the nerve trunk observed compared with the whole-circle contact group at both 4 and 10 weeks post-implantation. Electrodes with point and 1/4 circle contacts represented an alternatively portable and effective method of electrical stimulation to facilitate injured sciatic nerve regeneration and reduce subsequent muscular atrophy, which might offer a promising approach for treating peripheral nerve injuries.


Assuntos
Terapia por Estimulação Elétrica/métodos , Eletrodos Implantados , Traumatismos dos Nervos Periféricos/terapia , Recuperação de Função Fisiológica , Nervo Isquiático/lesões , Animais , Masculino , Músculo Esquelético/inervação , Regeneração Nervosa/fisiologia , Traumatismos dos Nervos Periféricos/patologia , Ratos , Ratos Sprague-Dawley , Nervo Isquiático/patologia , Nervo Isquiático/ultraestrutura
5.
J Neurosurg Spine ; 29(5): 491-499, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30074443

RESUMO

OBJECTIVEContralateral C7 (CC7) nerve root has been used as a donor nerve for targeted neurotization in the treatment of total brachial plexus palsy (TBPP). The authors aimed to study the contribution of C7 to the innervation of specific upper-limb muscles and to explore the utility of C7 nerve root as a recipient nerve in the management of TBPP.METHODSThis was a 2-part investigation. 1) Anatomical study: the C7 nerve root was dissected and its individual branches were traced to the muscles in 5 embalmed adult cadavers bilaterally. 2) Clinical series: 6 patients with TBPP underwent CC7 nerve transfer to the middle trunk of the injured side. Outcomes were evaluated with the modified Medical Research Council scale and electromyography studies.RESULTSIn the anatomical study there were consistent and predominantly C7-derived nerve fibers in the lateral pectoral, thoracodorsal, and radial nerves. There was a minor contribution from C7 to the long thoracic nerve. The average distance from the C7 nerve root to the lateral pectoral nerve entry point of the pectoralis major was the shortest, at 10.3 ± 1.4 cm. In the clinical series the patients had been followed for a mean time of 30.8 ± 5.3 months postoperatively. At the latest follow-up, 5 of 6 patients regained M3 or higher power for shoulder adduction and elbow extension. Two patients regained M3 wrist extension. All regained some wrist and finger extension, but muscle strength was poor. Compound muscle action potentials were recorded from the pectoralis major at a mean follow-up of 6.7 ± 0.8 months; from the latissimus dorsi at 9.3 ± 1.4 months; from the triceps at 11.5 ± 1.4 months; from the wrist extensors at 17.2 ± 1.5 months; from the flexor carpi radialis at 17.0 ± 1.1 months; and from the digital extensors at 22.8 ± 2.0 months. The average sensory recovery of the index finger was S2. Transient paresthesia in the hand on the donor side, which resolved within 6 months postoperatively, was reported by all patients.CONCLUSIONSThe C7 nerve root contributes consistently to the lateral pectoral nerve, the thoracodorsal nerve, and long head of the triceps branch of the radial nerve. CC7 to C7 nerve transfer is a reconstructive option in the overall management plan for TBPP. It was safe and effective in restoring shoulder adduction and elbow extension in this patient series. However, recoveries of wrist and finger extensions are poor.


Assuntos
Neuropatias do Plexo Braquial/cirurgia , Plexo Braquial/cirurgia , Transferência de Nervo , Punho/cirurgia , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Força Muscular/fisiologia , Músculo Esquelético/cirurgia , Transferência de Nervo/métodos , Resultado do Tratamento , Punho/inervação
6.
Neural Regen Res ; 11(12): 2025-2030, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28197202

RESUMO

The expression of nerve cell adhesion molecule L1 in the neuronal growth cone of the central nervous system is strongly associated with the direction of growth of the axon, but its role in the regeneration of the peripheral nerve is still unknown. This study explored the problem in a femoral nerve section model in rats. L1 and semaphorin 3A mRNA and protein expressions were measured over the 4-week recovery period. Quantitative polymerase chain reaction showed that nerve cell adhesion molecule L1 expression was higher in the sensory nerves than in motor nerves at 2 weeks after injury, but vice versa for the expression of semaphorin 3A. Western blot assay results demonstrated that nerve cell adhesion molecule L1 expression was higher in motor nerves than in the sensory nerves at the proximal end after injury, but its expression was greater in the sensory nerves at 2 weeks. Semaphorin 3A expression was higher in the motor nerves than in the sensory nerves at 3 days and 1 week after injury. Nerve cell adhesion molecule L1 and semaphorin 3A expressions at the distal end were higher in the motor nerves than in the sensory nerves at 3 days, 1 and 2 weeks. Immunohistochemical staining results showed that nerve cell adhesion molecule L1 expression at the proximal end was greater in the sensory nerves than in the motor nerves; semaphorin 3A expression was higher in the motor nerves than in the sensory nerves at 2 weeks after injury. Taken together, these results indicated that nerve cell adhesion molecules L1 and semaphorin 3A exhibited different expression patterns at the proximal and distal ends of sensory and motor nerves, and play a coordinating role in neural chemotaxis regeneration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA