Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Huan Jing Ke Xue ; 44(7): 3923-3932, 2023 Jul 08.
Artigo em Chinês | MEDLINE | ID: mdl-37438291

RESUMO

Accurate quantification of non-point source pollution is an important step for non-point source pollution control and management at the watershed scale. Considering the non-point source pollution from baseflow, an improved export coefficient model (IECM) on a weekly scale was established based on the traditional export coefficient model (ECM), which was then used to estimate the surface flow non-point source total nitrogen (TN) loads contributed by different land use types of the Shangwu River watershed in the Qiandao Lake Region. The results showed that IECM performed well for the predictions of TN loads in the studied watershed, with the Nash-Sutcliffe efficiency coefficient (NSE) and R2values of 0.82 and 0.77 (P<0.01) for the calibration period and 0.87 and 0.84 (P<0.01) for the validation period, respectively. The IECM estimated TN exports through surface flow and baseflow were 5.74 kg·(hm2·a)-1and 9.85 kg·(hm2·a)-1 from the Shangwu River watershed in the period of Nov. 2020 to Oct. 2021, which accounted for 36.80% and 63.20% of the corresponding streamflow TN load, respectively. Without consideration of the baseflow non-point source TN pollution, the ECM-estimated surface flow TN loading was 54.21% higher than that estimated by IECM. Obviously, attributing baseflow non-point source pollution to surface flow directly would lead to a serious load overestimation of surface flow. According to IECM, the estimated TN export intensity through surface flow from paddy fields, grasslands, woodlands, rainfed croplands, and residential lands was 10.95, 5.42, 5.20, 12.34, and 2.77 kg·(hm2·a)-1, respectively, which accounted for 5.80%, 4.00%, 26.55%, 0.38%, and 0.03% of the corresponding total streamflow TN loads. Therefore, the future management of non-point source nitrogen pollution in the studied watershed should focus mainly on the prevention and management of groundwater non-point source pollution and control of load export from surface flow on cultivated land (paddy fields and rainfed croplands).

2.
Huan Jing Ke Xue ; 42(6): 2826-2838, 2021 Jun 08.
Artigo em Chinês | MEDLINE | ID: mdl-34032082

RESUMO

Inland waters are vital sinks for active carbon (C) and potential sources of greenhouse gas emissions. In this study, the characteristics of dissolved carbon dioxide (CO2) and methane (CH4) concentrations in the Nantiaoxi River system in the upper reaches of the Taihu Lake basin were observed between Jul. 2019 and Nov. 2019 (summer and autumn) using headspace equilibration-gas chromatography. Simultaneously, physical and chemical parameters were also determined to understand the factors influencing dissolved CO2 and CH4 concentrations. The results showed that the mean dissolved CO2 concentrations and saturation levels in water were (505.47±16.99) µg·L-1 and (256.31±8.32)%, respectively, and the corresponding values for CH4 were (1.88±0.09) µg·L-1 and (5218.74±264.30)%, respectively. The saturation levels of dissolved CO2 and CH4 at all observation points were greater than 100%, indicating that the Nantiaoxi River system is a potential source of CO2 and CH4. The highest mean dissolved CO2 concentrations in water were found in agricultural areas followed by residential and forest areas, and there were significant differences among the three land-use types. The mean dissolved CH4 concentrations in the water in residential areas were significantly higher than those in agricultural area forest areas. The dissolved CO2 concentrations, saturation levels of CO2, dissolved CH4 concentrations, and saturation levels of CH4 in water were all negatively correlated with oxidation reduction potential (ORP) (P<0.01) and positively correlated with electrical conductivity (EC) (P<0.01). The discrepancies in chlorophyll (Chl-a), nitrate (NO3--N), total nitrogen (TN), and EC were the main reasons for differences in dissolved CO2 concentrations among the different land use types. Phytoplankton growth could be promoted by the higher input of nitrogen pollutants into rivers in agricultural and residential areas, and respiration could be also enhanced, resulting in higher dissolved CO2 concentrations. The higher concentrations of dissolved organic carbon (DOC) and ammonium nitrogen (NH4+-N) in the water, and the water temperature in residential areas, were probably the main causes of the higher dissolved CH4 concentrations. Rainfall also had some influence on dissolved CO2 and CH4 concentrations in the water associated with the different land use types. Specifically, higher concentrations of nitrogen pollutants and the enhancement of DOC were the main drivers of high dissolved CO2 concentrations in agricultural areas as well as the higher dissolved CH4 concentrations in residential areas following rainfall events.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA