RESUMO
Recent studies have increasingly focused on PIK3CA mutations in esophageal squamous cell carcinoma (ESCC); however, the clinicopathological significance of these mutations within the tumor microenvironment remains underexplored. This study aimed to evaluate and compare the clinicopathological significance of mutated PIK3CA in ESCC using in silico analyses of the ESCC dataset from the TCGA database. We assessed prognosis, differential expression, correlation with immune cell infiltration and immune checkpoint expression, heterogeneity, and drug sensitivity in comparison with wild-type PIK3CA. Our findings revealed that PIK3CA mutation is associated with increased tumor mutation burden and significantly correlated with the infiltration of CD4 naive and effector memory CD4 T cells. Additionally, ESCC cells harboring PIK3CA mutations exhibited reduced sensitivity to p38/JNK MAPK inhibitors compared to those with wild-type PIK3CA. Collectively, our in silico analysis suggests that mutational PIK3CA plays a role in resistance to p38 and JNK MAPK inhibitors in ESCC.
RESUMO
Thought of as a metastasis-associated gene, however, NME/NM23 nucleoside diphosphate kinase 4 (NME4) has rarely been described in the context of the tumour microenvironment. To understand the immunological implications of NME4 in oesophageal squamous cell carcinoma (ESCC), we used multiplex immunohistochemistry to analyse the clinicopathological and prognostic importance of NME4 expression. Then, after establishing a syngeneic tumour model with a C57BL/6 mouse strain that can recapitulate the tumour microenvironment of humans, we examined the immunological involvement of NME4 expression. To explore the underlying molecular mechanism, via quantitative proteomics and protein microarray screening, we investigated the potential signalling pathways involved. The clinicopathological and prognostic importance of NME4 expression is limited in ESCC patients. In vivo, single-cell RNA sequencing showed that NME4 strikingly prevented CD8+ T cells from infiltrating the tumour microenvironment in murine ESCC. Mechanistically, we mapped out the NFκB2-CCL5 axis that was negatively controlled by NME4 in the murine ESCC cell line AKR. Collectively, these data demonstrated that regulation of NFκB2-CCL5 axis by NME4 prevents CD8+ T cells infiltration in ESCC.
Assuntos
Linfócitos T CD8-Positivos , Quimiocina CCL5 , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Linfócitos do Interstício Tumoral , Nucleosídeo NM23 Difosfato Quinases , Microambiente Tumoral , Animais , Feminino , Humanos , Masculino , Camundongos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Quimiocina CCL5/metabolismo , Quimiocina CCL5/genética , Neoplasias Esofágicas/imunologia , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas do Esôfago/imunologia , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/metabolismo , Regulação Neoplásica da Expressão Gênica/imunologia , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Camundongos Endogâmicos C57BL , Nucleosídeo NM23 Difosfato Quinases/metabolismo , Nucleosídeo NM23 Difosfato Quinases/genética , Prognóstico , Transdução de Sinais , Microambiente Tumoral/imunologiaRESUMO
Vimentin has been considered a canonical marker of epithelial-mesenchymal transition (EMT) and is associated with tumor escape characterized by aberrant PD-L1 expression. However, whether there is a relationship between vimentin and PD-L1 in esophageal squamous cell carcinoma (ESCC) remains poorly understood. The immunological involvement of vimentin in ESCC was first analyzed by multiplex immunofluorescence staining in ESCC tissue microarray followed by a xenografted mouse model. In vivo, C57BL/6 mice were subcutaneously transplanted with AKR cells after stable silencing of vimentin. In vivo results showed that in addition to PD-L1 and PD-L2 expression, vimentin expression was inversely correlated with CD8+ T-cell infiltration. Mechanistically, vimentin can directly interact with PD-L1 and promote nuclear translocation of PD-L1 in AKR cells. In addition, SEMA6C, STC-2 and TRAILR2 were identified as cytokines modulated by vimentin. Blockade of STC-2 and TRAILR2 in co-culture with their own primary antibodies was shown to recruit more CD8+ T cells than controls. Together, these data strongly suggest targeting Vimenin to overcome the immune cycle in ESCC.
Assuntos
Antígeno B7-H1 , Linfócitos T CD8-Positivos , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Camundongos Endogâmicos C57BL , Vimentina , Animais , Feminino , Humanos , Masculino , Camundongos , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/imunologia , Regulação Neoplásica da Expressão Gênica , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Vimentina/metabolismo , Pessoa de Meia-IdadeRESUMO
Omega-3 polyunsaturated fatty acids (ω-3 PUFAs) have been associated with potential cardiovascular benefits, partly attributed to their bioactive metabolites. However, the underlying mechanisms responsible for these advantages are not fully understood. We previously reported that metabolites of the cytochrome P450 pathway derived from eicosapentaenoic acid (EPA) mediated the atheroprotective effect of ω-3 PUFAs. Here, we show that 17,18-epoxyeicosatetraenoic acid (17,18-EEQ) and its receptor, sphingosine-1-phosphate receptor 1 (S1PR1), in endothelial cells (ECs) can inhibit oscillatory shear stress- or tumor necrosis factor-α-induced endothelial activation in cultured human ECs. Notably, the atheroprotective effect of 17,18-EEQ and purified EPA is circumvented in male mice with endothelial S1PR1 deficiency. Mechanistically, the anti-inflammatory effect of 17,18-EEQ relies on calcium release-mediated endothelial nitric oxide synthase (eNOS) activation, which is abolished upon inhibition of S1PR1 or Gq signaling. Furthermore, 17,18-EEQ allosterically regulates the conformation of S1PR1 through a polar interaction with Lys34Nter. Finally, we show that Vascepa, a prescription drug containing highly purified and stable EPA ethyl ester, exerts its cardiovascular protective effect through the 17,18-EEQ-S1PR1 pathway in male and female mice. Collectively, our findings indicate that the anti-inflammatory effect of 17,18-EEQ involves the activation of the S1PR1-Gq-Ca2+-eNOS axis in ECs, offering a potential therapeutic target against atherosclerosis.
Assuntos
Ácido Eicosapentaenoico , Receptores de Esfingosina-1-Fosfato , Animais , Ácido Eicosapentaenoico/farmacologia , Ácido Eicosapentaenoico/análogos & derivados , Ácido Eicosapentaenoico/metabolismo , Humanos , Camundongos , Receptores de Esfingosina-1-Fosfato/metabolismo , Masculino , Óxido Nítrico Sintase Tipo III/metabolismo , Aterosclerose/metabolismo , Aterosclerose/prevenção & controle , Receptores de Lisoesfingolipídeo/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Ácidos AraquidônicosRESUMO
Compared with those in adenocarcinoma, PIK3CA mutations are more common in squamous cell carcinoma (SCC), which arises from stratified squamous epithelia that are usually exposed to adverse environmental factors. Although hotspot mutations in exons 9 and 20 of PIK3CA, including E542K, E545K, H1047L and H1047R, are frequently encountered in the clinic, their clinicopathological meaning remains to be determined in the context of SCC. Considering that few reviews on PIK3CA mutations in SCC are available in the literature, we undertook this review to shed light on the clinical significance of PIK3CA mutations, mainly regarding the implications and ramifications of PIK3CA mutations in malignant cell behavior, prognosis, relapse or recurrence and chemo- or radioresistance of SCC. It should be noted that only those studies regarding SCC in which PIK3CA was mutated were cherry-picked, which fell within the scope of this review. However, the role of mutated PIK3CA in adenocarcinoma has not been discussed. In addition, mutations occurring in other main members of the PI3K-AKT-mTOR signaling pathway other than PIK3CA were also excluded.
Assuntos
Carcinoma de Células Escamosas , Classe I de Fosfatidilinositol 3-Quinases , Mutação , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Serina-Treonina Quinases TOR , Humanos , Classe I de Fosfatidilinositol 3-Quinases/genética , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Transdução de Sinais/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , AnimaisRESUMO
While genome-wide studies have identified genomic loci in hosts associated with life-threatening Covid-19 (critical Covid-19), the challenge of resolving these loci hinders further identification of clinically actionable targets and drugs. Building upon our previous success, we here present a priority index solution designed to address this challenge, generating the target and drug resource that consists of two indexes: the target index and the drug index. The primary purpose of the target index is to identify clinically actionable targets by prioritising genes associated with Covid-19. We illustrate the validity of the target index by demonstrating its ability to identify pre-existing Covid-19 phase-III drug targets, with the majority of these targets being found at the leading prioritisation (leading targets). These leading targets have their evolutionary origins in Amniota ('four-leg vertebrates') and are predominantly involved in cytokine-cytokine receptor interactions and JAK-STAT signaling. The drug index highlights opportunities for repurposing clinically approved JAK-STAT inhibitors, either individually or in combination. This proposed strategic focus on the JAK-STAT pathway is supported by the active pursuit of therapeutic agents targeting this pathway in ongoing phase-II/III clinical trials for Covid-19.
Assuntos
COVID-19 , Animais , Janus Quinases/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição STAT/genética , Citocinas/metabolismoRESUMO
The involvement of the mitochondrial ribosomal protein 13 (MRPL13) gene in the development of adenocarcinoma has been previously reported. However, the clinicopathological significance of MRPL13 in squamous cell carcinoma (SCC) remains poorly understood. To gain insight into the clinicopathological and immunological implications of MRPL13 expression in SCC, we conducted a bioinformatic analysis utilizing various available databases, including TIMER 2.0, Xiantao academic tool and TISIDB, attempting to evaluate the abnormal expression, prognosis and immunological correlation of MRPL13 in the pan-SCC setting. Subsequently, we conducted experimental verification using an esophageal squamous cell carcinoma (ESCC) tissue array subjected to multiplexed immunofluorescent (mIF) staining. The ESCC tissue array we used consists of 93 dots of ESCC and 86 dots of matched adjacent normal tissues (ANT). Data from in silico analyses showed that MRPL13 mRNA is significantly up-regulated and correlated with infiltration of CD8+ T cells in pan-SCC. However, in silico analyses did not support the prognostic role of MRPL13 in SCC. Consistently, data from the ESCC tissue array showed that MRPL13 was remarkably elevated in ESCC tissues relative to ANT in stroma, which was controlled by pan-cytokeratin (pan-CK) staining. In the epithelia, no significant difference was identified between ESCC and ANT. Furthermore, MRPL13 expression markedly correlated with the infiltration of CD8+ T cells in the stromal region but not in the epithelial region. Prognostically, no significant association was observed between MRPL13 expression and overall survival, regardless of epithelial or stromal section. Through these pan-SCC analyses, we have expanded the understanding of MRPL13 previously reported, in particular, underscoring the immunological involvement of MRPL13 in the tumor microenvironment of SCC that has been under-recognized before, suggesting that MRPL13 may regulate the infiltration of CD8+ T cells into the SCC microenvironment.
RESUMO
Short for pyruvate kinase M2 subtype, PKM2 can be said of all-round player that is notoriously known for its metabolic involvement in glycolysis. Holding a dural role as a metabolic or non-metabolic (kinase) enzyme, PKM2 has drawn extensive attention over its biological roles implicated in tumor cells, including proliferation, migration, invasion, metabolism, and so on. wandering PKM2 can be transboundary both intracellularly and extracellularly. Specifically, PKM2 can be nuclear, cytoplasmic, mitochondrial, exosomal, or even circulate within the body. Importantly, PKM2 can function as an RNA-binding protein (RBP) to self-support its metabolic function. Despite extensive investigations or reviews available surrounding the biological roles of PKM2 from different angles in tumor cells, little has been described regarding some novel role of PKM2 that has been recently found, including, for example, acting as RNA-binding protein, protection of Golgi apparatus, and remodeling of microenvironment, and so forth. Given these findings, in this review, we summarize the recent advancements made in PKM2 research, mainly from non-metabolic respects. By the way, PKM1, another paralog of PKM2, seems to have been overlooked or under-investigated since its discovery. Some recent discoveries made about PKM1 are also preliminarily mentioned and discussed.
Assuntos
Glicólise , Neoplasias , Piruvato Quinase , Linhagem Celular Tumoral , Piruvato Quinase/metabolismo , Proteínas de Ligação a RNA/metabolismo , Neoplasias/metabolismo , HumanosRESUMO
In the present study, a novel water-soluble polysaccharide (DNP-1) was isolated and purified from the root of Duhaldea nervosa via column chromatography. Structural analyses indicated that DNP-1 had a linear backbone consisting of (2â1)-linked ß-D- fructofuranosyl residues, ending with a (2â1) bonded α-D-glucopyranose. DNP-1 was a homogeneous polysaccharide with an average molecular weight of 3.7 kDa. Furthermore, the anti-inflammatory activity of DNP-1 was investigated in vitro. The concentration of pro-inflammatory cytokines, including NO, TNF-α, MCP-1, IL-2, and IL-6, in the DNP-1 treatment group was suppressed in LPS-induced RAW 264.7 cells. DNP-1 was able to improve inflammatory injury by inhibiting the secretion of pro-inflammatory cytokines. These investigations into this polysaccharide from the root of Duhaldea nervosa provide a scientific basis for the further development of this plant. The results indicate that this Duhaldea nervosa polysaccharide could be used as a potential natural source for the treatment of inflammatory injury.
RESUMO
Antibiotic was detected in many environments, and it had posed a serious threat to human health. The advanced oxidation process has been considered an effective way to treat antibiotics. In this work, using industrial waste red mud (RM) as raw material, a series of modified RM (MRM-T; T donates the calcination temperature) was obtained via a facile calcination method and applied to activate sodium bisulfite (NaHSO3) for the lomefloxacin (LOM) degradation. Among all MRM-T, MRM-700 exhibited superior catalytic activity, and approximately 89% of LOM (10 mg/L) was degraded at 30 min through the activation of NaHSO3 ([NaHSO3] = 0.5 g/L) by MRM-700 ([MRM-700] = 0.9 g/L). Moreover, the kinetic constant of LOM removal in the MRM-700/NaHSO3 system (0.082 min-1) was 16.4 times higher than that of the RM-raw/NaHSO3 system (0.005 min-1). The as-synthesized product of MRM-700 was characterized by N2 adsorption-desorption isotherms, X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and Raman spectra. The result indicated that the catalyst possessed excellent pore structure, high specific area, and abundant Fe3+ sites, and the lattice of Fe2O3 was doped after calcination, both of which were favorable for the activation of NaHSO3. The quenching experiment proved that â¢SO4- and â¢OH- active species were produced in MRM-700/NaHSO3 system, and â¢SO4- played a dominant role in LOM removal. In addition, the potential LOM degradation pathway was analyzed via UPLC-MS technology and density functional theory (DFT) calculation, and the toxicity of the treated LOM solution was tested by the culture of mung bean sprouts. This study not only provided a feasible strategy for the valuable use of RM to activate NaHSO3 but also offered a cost-effective catalyst for the efficient removal of pollutants in wastewater.
Assuntos
Espectrometria de Massas em Tandem , Humanos , Cromatografia Líquida , CatáliseRESUMO
Aberrant composition of glycans in the tumor microenvironment (TME) contributes to tumor progression and metastasis. Chondroitin polymerizing factor (CHPF) is a glycosyltransferase that catalyzes the biosynthesis of chondroitin sulfate (CS). It is also correlated to transforming growth factor-ß1 (TGF-ß1) expression, a crucial mediator in the interaction of cancer cells with TME. In this study, we investigated the association of CHPF expression with the clinicopathological features of breast cancer (BRCA), as well the oncogenic effect and the underling mechanisms of CHPF upon BRCA cells. We found that CHPF expression is significantly increased in human BRCA tissues, and it is positively associated with TGF-ß expression (r = 0.7125). The high-expression of CHPF predicts a poor prognosis and is positively correlated with tumor mass, lymph node metastasis, clinical staging and HER-2 negative-expression. The mechanistic study revealed that it promotes BRCA cell proliferation, migration and invasion through TGF-ß1-induced SMAD3 and JNK activation in vitro, JNK (SP600125) or SMAD3 (SIS3) inhibitor can remove the promotion of CHPF upon cell proliferation, migration and invasion in MDA-MB-231 cells, which is derived from triple-negative breast cancer (TNBC). Collectively, our finding suggested CHPF may function as an oncogene and is highly expressed in human BRCA tissues. Pharmacological blockade of the upstream of JNK or SMAD3 signaling may provide a novel therapeutic target for refractory TNBC patients with CHPF abnormal high-expression.
RESUMO
BACKGROUND: The objective of this study was to explore the stigma and related influencing factors in individuals with chronic insomnia disorder (CID). METHODS: A total of 70 CID patients and 70 healthy controls (CON) were enrolled in the study. All subjects completed the assessments of sleep, emotion, and cognition. Their stigma and life quality were measured using the Chronic Stigma Scale and the 36-Item Short-Form Health Survey (SF-36). RESULTS: The ratio of individuals with stigma was significantly different between CID and CON groups (C2 = 35.6, p < 0.001). Compared with the CON group, the CID group had higher scores for total stigma (U = 662.0, p < 0.001), internalized stigma (U = 593.0, p < 0.001), enacted stigma (U = 1568.0, p < 0.001), PSQI (U = 2485.0, p < 0.001) and HAMD-17 (U = 69.5, p < 0.001) as well as lower scores for MoCA-C (U = 3997.5, p < 0.001) and most items of SF-36. Partial correlation analysis showed that different items of the Chronic Stigma Scale were positively correlated with illness duration, PSQI and HAMD-17 scores, while negatively correlated with one or more items of the SF-36. Multivariate regression analysis showed that illness duration and the Mental Health domain of the SF-36 were independent risk factors for one or more items of stigma in CID patients. CONCLUSION: Patients with CID have an increased risk of stigma. Moreover, illness duration and Mental Health may be primary factors related to stigma.
Assuntos
Distúrbios do Início e da Manutenção do Sono , Emoções , Humanos , Qualidade de Vida/psicologia , Estigma Social , Inquéritos e QuestionáriosRESUMO
Cephalanthus tetrandrus (Roxb.) Ridsd. et Badh. F. (CT) belongs to the Rubiaceae family. Its dried leaves are widely used in traditional Chinese medicine to treat enteritis, dysentery, toothache, furuncles, swelling, traumatic injury, fracture, bleeding, and scalding. In order to further clarify the unknown chemical composition of CT, a rapid strategy based on UHPLC-Q-exactive orbitrap was established for this analysis using a Thermo Scientific Hypersil GOLDTM aQ (100 mm × 2.1 mm, 1.9 µm) chromatographic column. The mobile phase was 0.1% formic acid water-acetonitrile, with a flow rate of 0.3 mL/min and injection volume of 2 µL; for mass spectrometry, an ESI ion source in positive and negative ion monitoring modes was adopted. A total of 135 chemicals comprising 67 chlorogenic acid derivatives, 48 flavonoids, and 20 anthocyanin derivatives were identified by comparing the mass spectrum information with standard substances, public databases, and the literature, which were all discovered for the first time in this plant. This result broadly expands the chemical composition of CT, which will contribute to understanding of its effectiveness and enable quality control.
Assuntos
Medicamentos de Ervas Chinesas , Rubiaceae , Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/química , Flavonoides/análise , Espectrometria de Massas/métodosRESUMO
Objectives: To examine serum concentrations of aquaporin-4 (AQP4), connexin-30 (CX30), connexin-43 (CX43), and their correlations with cognitive function in the patients with chronic insomnia disorder (CID). Methods: We enrolled 76 subjects with CID and 32 healthy controls (HCs). Serum levels of AQP4, CX30, and CX43 were measured by enzyme-linked immunosorbent assays. Sleep quality was assessed with the Pittsburgh Sleep Quality Index (PSQI) and polysomnography, and mood was evaluated with 17-item Hamilton Depression Rating Scale and 14-item Hamilton Anxiety Rating Scale. Cognitive function was evaluated by the Chinese-Beijing Version of Montreal Cognitive Assessment (MoCA-C) and Nine Box Maze Test. Results: The serum levels of AQP4, CX43, and CX30 were significantly reduced in the CID group compared to the HCs. Partial correlation analysis showed that the biomarkers showed no significant correlations with PSQI score, AHI, ODI and TS90, but AQP4, CX43, and CX30 were positively associated with the percentage and total time of slow wave sleep in the CID group. Serum concentrations of AQP4 and CX30 were positively associated with MoCA-C score in the CID group, and AQP4 level negatively correlated with spatial working memory errors. Conclusions: Subjects with CID patients have decreased serum levels of AQP4, CX30, and CX43 indicating astrocyte dysfunction, which could be related to poor objective sleep quality and/or cognition dysfunction.
RESUMO
BACKGROUND: Epidemiological and observational clinical studies have found that insomnia is a risk factor for stroke and that, accordingly, insomnia is likely to cause changes of stroke-related biomarkers. There is substantial evidence that stroke is closely related to endothelial dysfunction and hypertension. The aim of this study is to investigate whether there is alteration of endothelial dysfunction (CD62E+) and hypertension (angiotensin II and copeptin) biomarkers in patients with chronic insomnia disorder (CID). METHODS: The CID patients (N = 54) and the good sleepers (GS, N = 32) were enrolled. Pittsburgh sleep quality index (PSQI), pre-sleep arousal scale (PSAS) and polysomnography were used to assess their sleep and neuropsychological function. Serum levels of CD62E+, angiotensin II and copeptin were determined using a quantitative sandwich ELISA. RESULTS: The CID group had higher serum levels of CD62E+, angiotensin II, and copeptin than the GS group. After controlling for sex, age, depression and apnea-hypopnea index, the partial correlation analysis revealed that the levels of CD62E+ and copeptin correlated positively with the PSAS score and negatively with the objective sleep quality. Angiotensin II levels negatively correlated with objective sleep onset latency. Moreover, there was a positive correlation between CD62E+ and angiotensin II. Principal components analysis revealed that CD62E+ and copeptin had a substantial correlation with parameters of subjective and objective sleep. CONCLUSION: Patients with CID exhibit endothelial activation, over-activated renin-angiotensin system and increased sympathetic excitability, as indicated by increased serum levels of CD62E+, angiotensin II and copeptin, with linking to poor sleep quality.
Assuntos
Angiotensina II , Selectina E , Glicopeptídeos , Distúrbios do Início e da Manutenção do Sono , Acidente Vascular Cerebral , Angiotensina II/sangue , Biomarcadores/sangue , Selectina E/sangue , Glicopeptídeos/sangue , Humanos , Hipertensão , Distúrbios do Início e da Manutenção do Sono/complicações , Acidente Vascular Cerebral/complicaçõesRESUMO
BACKGROUND: To distinguish insomnia comorbid with depression (ICD) from chronic insomnia disorder (CID) by exploring the relationship between serum levels of frequently overlooked anti-inflammatory cytokines and cognitive function. METHODS: A total of 42 ICD patients, 63 CID patients, and 42 healthy control subjects were enrolled in the study. The Pittsburgh Sleep Quality Index and Hamilton Depression Rating Scale were used to assess sleep quality and depression severity, respectively. The Chinese-Beijing version of Montreal Cognitive Assessment scale (MoCA-C) and Nine-Box Maze Test (NBMT) were used to assess cognitive function. Serum levels of anti-inflammatory interleukins (IL-1RA, IL-4, IL-5, IL-10, IL-13, and IL-28A), transforming growth factor (TGF)-ß1, granulocyte-macrophage colony-stimulating factor, interferon-γ, and the chemokine regulated upon activation, normal T cell expressed and secreted (RANTES) were measured by enzyme-linked immunosorbent assay. RESULTS: The ICD group had significantly more errors in the spatial reference task (H=2.55, Ps=0.03) and spatial working memory task (H=5.67, Ps<0.01) of the NBMT, as well as lower levels of IL-1RA (H=-2.85, Ps=0.01), IL-4 (H=-3.28, Ps<0.01), IL-5 (H=-3.35, Ps<0.01), IL-10 (H=-4.46, Ps<0.01), and IL-28A (H=-2.75, Ps=0.02) than control subjects. Compared with the CID group, the ICD group had significantly more errors in the spatial reference memory task (H=-2.84, Ps=0.01) of the NBMT, and lower levels of IL-5 (H=3.41, Ps<0.01), IL-10 (H=5.30, Ps<0.01), IL-13 (H=3.89, Ps<0.01), and GM-CSF (H=2.72, Ps=0.02). A partial correlation analysis showed that the level of one or more of IL-4, IL-5, IL-10, IL-13, and TGF-ß1 was positively correlated with cognitive function (MoCA-C score and/or performance in spatial memory task) in ICD patients. CONCLUSION: ICD is a distinct condition that can be distinguished from CID based on immune dysfunction and specific types of cognitive dysfunction.
RESUMO
In the work described here, a two-layer biotrickling filter filled with new packing materials was used to remove H2S from air. The upper layer of the filter was packed with activated carbon-loaded polyurethane, whereas the lower layer was filled with modified organism-suspended fillers. The effects of inlet load, empty bed residence time (EBRT) from 79 s to 53 s, pH and contaminant starvation time were investigated. For loads of 15-50 g/(m(3) h), the average removal efficiency (RE) was higher than 96% under a consistent supply of pollutants. The critical elimination capacity was 39.95 g/(m(3) h) for an EBRT of 53 s with an RE of 99.9%. The two-layer BTF was capable of withstanding contaminant starvation periods for 1.5 d and 7 d with only a few hours of recovery time. The biodegradation kinetics was studied using Michaelis-Menten type equations under different EBRTs. At an EBRT of 66 s, the optimal kinetic constants rmax and Km were 333.3 g/(m(3) h) and 0.93 g/m(3), respectively. During the operation, the two-layer BTF performed well under various reasonable conditions.
Assuntos
Filtração/instrumentação , Sulfeto de Hidrogênio/isolamento & purificação , Poluentes Atmosféricos/isolamento & purificação , Poluentes Atmosféricos/metabolismo , Biodegradação Ambiental , Desenho de Equipamento , Filtração/métodos , Sulfeto de Hidrogênio/metabolismo , Cinética , Consórcios Microbianos , Poliuretanos/química , Esgotos/microbiologiaRESUMO
OBJECTIVE: The influence of ß2-microglobulin (ß2-MG) on the prognosis of non-Hodgkin's lymphoma (NHL) remains controversial. This study performed meta-analyses to evaluate the prognostic value of ß2-MG on the overall survival (OS) of NHL. METHODS: Through a search of relevant literature in PubMed, EMbase, Science Direct, OVID and Wanfang databases from 1980-2013, the hazard ratios (HRs) of OS between the normal ß2-MG group and the increased ß2-MG group were retrieved, and the results were combined using a fixed effect model and a random effect model. Subgroup analyses were performed based on univariate and multivariate analysis results, and sensitivity analyses were performed to estimate the changes of the combined HRs. In addition, funnel plots and fail-safe numbers were used to estimate publication bias. RESULTS: A total of 17 qualified publications were included, with a cumulative total of 2,479 cases. The result of heterogeneity examination showed that there was heterogeneity among all studies (P < 0.001, I(2) = 87%). In the random effect model, the combined HR was 2.71 (95% confidence interval [CI]: 1.91-3.85). The result of the total effect examination was statistically significant (Z = 5.59, P < 0.001). CONCLUSION: The increased ß2-MG level was an independent risk factor for the prognosis of NHL.